Opportune Job Shredding: An Effective Approach for Scheduling Parameter
Sweep Applications®

Rohan Kurian

Pavan Balgii

P. Sadayappan

Computer and Information Science,
The Ohio State University,
2015 Neil Avenue,
Columbus, OH 43210
{kurian, balaji, saday } @cis.ohio-state.edu

Abstract

A number of applications comprise of several small inde-
pendent and homogeneous tasks that need to be executed.
However, most supercomputer centers enforce a restriction
on the number of jobs a single user can submit to the cluster
at any time in order to ensure fairness to the other submit-
ted jobs. This forces the users to combine these independent
homogeneous tasks into a single parallel Parameter Sweep
Application (PSA). In this paper we propose a new and ef-
ficient scheme, termed as Opportune Job Shredding, which
allows Supercomputer Centers to take advantage of the in-
dependence of the component tasks of Parameter Sweep Ap-
plications, without affecting the other submitted jobs signif-
icantly. We also propose an extension of the previously pro-
posed ’Multiple Simultaneous Requests” scheme combin-
ing it with the Opportune Job Shredding scheme allowing
Parameter Sweep Applications to be executed in parts on
remote clusters.

Keywords: Parameter Sweep Applications, Multiple Si-
multaneous Requests, Meta Scheduling

1 Introduction

Parameter Sweep Applications (PSAS) represent an impor-
tant class of computationally intense applications that re-
quire significant compute resources. Many users of shared
computational facilities like supercomputer centers gener-
ate PSAs. PSAs generally consist of a large number of in-
dependent tasks that may share some common files for in-
put and output. All tasks of a PSA must complete before
the job is complete, but the various tasks can be executed

*This research is supported in part by NSF grants #CCR-0204429 and
#EIA-9986052

independently and in any order. Parallel Tomography [33]
and MCell [21] are examples of PSAs. The Parallel To-
mography Application (also known as GTOMO) is being
used in production at the National Center For Microscopy
and Imaging Research. The MCell application is used as
a simulator for Cellular Micro-Physiology. Other such ap-
plications include those used for modeling photochemical
pollution, fluid flows, etc. We will go over some applica-
tions in more detail in section 3.

Due to the importance of PSAs, scheduling/resource-
management systems have been built to facilitate their ex-
ecution. These include APST (AppLeS Parameter Sweep
Template) [5, 28] and Nimrod/G [2]. APST, Nimrod/G
and SETIHome [31] are primarily targeted at utilizing
distributed computational resources over the web/grid for
PSAs. Without such systems, users of PSAs would have
to manually create and submit a large number of indepen-
dent jobs on different available machines. Middleware like
APST greatly eases the burden of PSA users, by automati-
cally spawning multiple tasks for a PSA job at suitable sites.
It uses dynamic load information on processors and network
links to determine the “best” sites to submit the tasks of a
PSA, i.e. the sites that will result in the fastest completion.

It is of great interest to look at effective ways of supporting
the use of parallel systems at supercomputer centers in exe-
cuting PSAs. Besides the tedium of manually creating hun-
dreds of separate jobs to submit to a supercomputer center,
users of PSAs have to face fair-share constraints imposed by
most centers on the maximum number of simultaneously
executable jobs from any user. These fair-share limits are
imposed to ensure that the resources of the center are not
monopolized by a single user.

While PSA scheduling systems like APST could be set up
to work in conjunction with schedulers at supercomputer
centers, there is a problem that has to be addressed in this

regard. Clearly, the usual fair-share limits of a supercom-
puter center’s policy need to be relaxed if the individual jobs
created by APST for a PSA are to execute without delay.
But if this were done, it could result in significant delays
of other non-PSA jobs in the system - the avoidance of this
problem is the reason why fair-share limits are imposed at
supercomputer centers.

In this paper we first use trace-driven simulations to char-
acterize the impact of introducing PSA job “fragments”
(i.e. the large number of individual independent small jobs
spawned for a single PSA job submitted to a system like
APST) into a mix of non-PSA jobs in a supercomputer cen-
ter environment. We show that non-PSA jobs are indeed ad-
versely affected. We then propose a new approach, termed
as Opportune Job Shredding, to significantly overcome the
degradation of non-PSA jobs, while still allowing for con-
siderable improvement of PSA jobs. We demonstrate that
the proposed scheme improves the slowdown of PSAs by
up to 70% and the overall loss of capacity of the system
by up to 21%. Not only does the scheme avoid significant
degradation of the average turnaround time of non-PSA jobs
in all cases, but it even improves their performance in some
cases.

Meta Schedulers and Grid Computing have recently be-
come an area of increasing interest. A number of re-
searchers have been studying various schemes to harness
the capabilities of multiple clusters. Different schemes have
been proposed to efficiently allow jobs to be executed on
remote and potentially heterogeneous clusters. Most of
these schemes rely on a centralized administrative author-
ity which handles the scheduling on all clusters. Recently,
a “Multiple Simultaneous Requests” scheme had been pro-
posed in order to efficiently schedule jobs on clusters which
do not belong to a single administrative domain. However,
both the existing variations of this scheme [35, 29] make
certain inherent assumptions which do not allow them to
be used in a generic environment consisting of clusters of
heterogeneous processing speeds and using different local
scheduling strategies. In this paper, we combine our scheme
with the existing "Multiple Simultaneous Requests” scheme
to allow Parameter Sweep Applications to be executed in
parts on remote clusters, without restrictive assumptions
about the local scheduling policies at the sites.

The remaining part of the paper is organized as follows: In
Section 2 we provide some background and discuss related
work. In Section 3 we discuss the nature of the Parameter
Sweep Applications in more detail. In Section 4 we de-
scribe the new scheme developed in this paper. We discuss
the simulations we carried out and the results comparing the
various schemes in Section 5 and present some concluding
remarks and possible future work in Section 6.

2 Background and Related Work

Parallel job scheduling strategies have been widely studied
[14, 24, 11, 26, 22, 3, 25, 8, 27, 35, 1]. Scheduling of par-
allel jobs is usually viewed in terms of a 2D chart with time
along one axis and the number of processors along the other
axis. Each job can be thought of as a rectangle whose length
is the user estimated run time and width is the number of
processors required. The simplest way to schedule jobs is
to use the First-Come-First-Served (FCFS) policy. This ap-
proach suffers from low system utilization [20]. Backfilling
[24, 10] was proposed to improve system utilization and
has been implemented is most production schedulers [9].
Backfilling works by identifying “holes” in the 2D chart
and moving forward smaller jobs that fit those holes. There
are two common variations to backfilling - conservative and
aggressive (EASY) [24, 32]. In conservative backfill, ev-
ery job is given a reservation when it enters the system. A
smaller job is moved forward in the queue as long as it does
not delay any previously queued job. In aggressive backfill-
ing, only the job at the head of the queue has a reservation.
A small job is allowed to leap forward as long as it does
not delay the job at the head of the queue. Fig. 1 shows an
example of a schedule with EASY backfilling.

T
T
T

T
T
T

I
T

\II|I|\|I|II IIIIIIIII IlI

il —[CTCTTTTT T T T T T T
Backfill T T T T T T - - -
T T T T 71 L T T T T I

Processors

Time

Reserved Job

Unreserved Job

Running Jobs

Queued Jobs

L LT T T T T T T T T T TTT1]
T T T T T T T T T T T T T T 1]

Crrrrrrrrrrrrrr11i

Figure 1. A job schedule with EASY backfill-
ing

2.1 Multi-Site Scheduling

While much of the research on job scheduling has focused
on the homogeneous single-site case, there has been con-
siderable recent interest in distributed and multi-site job
scheduling [4, 6, 12, 15, 16, 17, 18, 19, 34, 36]. Coopera-
tive multi-site scheduling enables jobs from heavily loaded
sites to be executed at remote sites that have a lighter load.
Analysis of job log traces [13] shows that the load at super-
computer centers follows a “sinusoidal” pattern of variation,
with the load increasing during the day, peaking somewhere
in the evening and then decreasing to a low in the very early
hours of the morning. By performing multi-site scheduling
over geographically distributed sites, better load balancing
can be facilitated.

We recently evaluated the impact of using multiple simul-
taneous reservations in a multi-site environment [35]. Each
job was simultaneously placed in the queue at more than
one site, and when a job was ready to actually start at any
of the sites, the other requests were cancelled. It was found
that this resulted in improved average job response times
compared to a scheme where each job is placed on the site
that had the least load. The primary reason for the effec-
tiveness of the multiple-simultaneous-request scheme is that
backfilling dynamics are very complex and unpredictable,
especially when user estimates of job runtime are inaccu-
rate. Therefore, it is very possible that a job may be able to
backfill and start earlier at a more heavily loaded site than
a lightly loaded site. Further, allowing more jobs in each
site’s queue enhances the chances of backfilling, thereby re-
ducing the loss of capacity of the system.

When the multiple-simultaneous-requests scheme was
evaluated in a heterogeneous environment [29], it was found
that it needed some adaptation in order to be effective.
Primarily, it was important to choose the execution site
for a job on the basis of expected completion time rather
than expected start time. In order to accurately estimate a
job’s completion time at multiple sites, it was necessary to
use conservative backfilling instead of aggressive backfill-
ing. Thus, some constraints must be imposed on the local
scheduling strategy at the sites in order for the multiple-
simultaneous-requests strategy to be effective. We show
later that in the context of PSA jobs, we can apply the
multiple-simultaneous-requests strategy effectively without
imposing any constraints on the local job scheduling strat-
egy at the different sites.

3 Parameter Sweep Applications

Parameter Sweep Applications (PSA) are naturally paral-
lel applications that can be structured as a large set of in-
dependent tasks that may share common files. The name
derives from applications that may be structured as sets of

experiments, each of which is executed with a distinct set of
parameters. Each experiment (task) may be independently
carried out, but the entire set must be completed before re-
sults can be generated. There are no task precedence con-
straints and therefore the total work may be packaged into
a number of independent chunks.

Due to the independent nature of the chunks of a PSA, the
user of a supercomputer center has many options in creat-
ing jobs for submission to the system. At one extreme, each
chunk could be submitted as an independent job. At the
other extreme, all chunks could be combined and submitted
as a very wide parallel job, requesting as many processors
as the number of chunks. In between, a range of possi-
bilities exist - the total number of jobs submitted can vary
from one to the number of chunks; further, each jobs can
be shaped to be short and very wide (requesting many pro-
cessors) or narrow and long (requesting few processors). A
significant consideration is that most supercomputer centers
impose “fair-share” constraints, that limit the total number
of simultaneous jobs or the number of processors requested
by the collection of simultaneously queued/active jobs of a
user. If the center imposes limits on the number of simul-
taneously active jobs of a user, users submit one or a few
parallel jobs that include the chunks of the PSA. Since the
scheduling system does not identify such jobs as PSA jobs,
they can only be started when the requested number of pro-
cessors is available - opportunities to start off independent
chunks of a PSA job on available idle processors cannot be
utilized.

Systems like Nimrod/G and APST, that support the execu-
tion of PSAs, have primarily targeted a grid environment.
Nimrod/G proposed the use of an economic model in de-
termining where the chunks of a PSA job are to be exe-
cuted - a cost is associated with execution at each of the
potential execution sites, and chunks are dispatched to sites
based on cost considerations. APST too primarily targets a
grid environment, and uses a load monitoring service such
as Network Weather Service (NWS) to determine dynamic
processor and network load information. The scheduling of
the chunks of a PSA job is done using estimates of response
time at various sites. Thus the scheduling strategy may be
categorized as a greedy approach that attempts to minimize
the response time of the PSA job, without any global con-
siderations regarding other jobs. Although a system like
APST could be configured to interact with job schedulers
at supercomputer centers, its greedy strategy of distributing
chunks of a PSA job can be expected to have an adverse
effect on the regular non-PSA jobs submitted to the super-
computer centers. The problem we address in this paper is
the development of a scheduling strategy that can exploit
the independence characteristic of the chunks of a PSA job
to improve its performance and that of the system, without
much degradation of non-PSA jobs.

Small Homogenous and Independent Tasks

Parallel
Parameter Sweep
Application

Figure 2. Parameter Sweep Application For-
mation

4 Proposed Scheme

A simple approach to take advantage of the characteris-
tics of the PSA jobs is a flooding based scheme where the
PSA jobs are shred into a number of small tasks. These
tasks are then submitted to the supercomputer center as
independent sequential jobs. We’ll refer to this approach
as the “Flooding-based approach”. As we’ll see in the
later sections, this approach not only improves the aver-
age turnaround time and slow down, for the PSA jobs, but
also benefits the overall system metrics such as the Loss of
Capacity (LOC) due to better back-filling. However, this
scheme gives an unfair advantage to the PSA jobs by al-
lowing them to flood the schedule and adversely affects teh
performance of the other Non-PSA jobs.

To remedy this, we propose a simple and novel scheme.
The basic idea of the scheme is to allow the PSA jobs to
shred and back-fill as long as they don’t hamper the back-
fill opportunities of the Non-PSA jobs. The focus of the
scheme is to utilize of the inherent characteristics of the
PSA jobs without affecting the Non-PSA jobs significantly.
We term this new scheme as “Opportune Job Shredding”.
In this model, we use an application-level scheduler similar
to APST or NIMROD/G which continuously monitors the
current state of the schedule, looking for opportunities for
the tasks in the PSA jobs to back-fill. If at the current time,

the application-level scheduler finds a hole to fit in one or
more of the PSA tasks, these tasks are shred from their par-
ent PSA job and allowed to back-fill and fill up the hole.

To demonstrate the functionality of the application-level
scheduler, let us consider a PSA job using ‘p’ processors
and running for ‘nT’ time units. Let us assume that this can
be broken into ‘pn’ number of independent sequential tasks,
each running for ‘T’ time units. When this PSA job is sub-
mitted, the supercomputer center follows its local schedul-
ing policy to schedule this “parallel” job together with the
other submitted jobs. During the scheduling event, a copy
of the PSA job is also given to the application-level sched-
uler which continuously monitors the state of the schedule.
Whenever a hole big enough to contain one or more of the
tasks in the PSA job is available at the current execution
time, the tasks are shred from the PSA job and allowed to
back-fill to be executed. When the PSA job reaches its re-
served execution time, it coordinates with the application-
level scheduler and executes only the tasks which have not
already been executed by the application-level scheduler.
This might result in the PSA job terminating before its es-
timated execution time, depending on the number of tasks
that were able to back-fill.

For the multi-cluster scenario, we extend this model to
have a two-stage hierarchy of application-level schedulers
(Figure 3). Each supercomputer center is associated with a
local application-level scheduler. Together with this, there’s
also a higher level meta-application-level scheduler. When
a PSA job is submitted to one cluster, multiple copies of the
job are created and submitted simultaneously to all the par-
ticipating clusters. The local application-level schedulers
try to schedule this PSA job on the cluster as described in
the single-site scenario. However, the distribution of the
tasks of a single PSA job over different clusters is handled
by the meta-scheduler.

Consider a PSA job using ‘p’ processors and running for
‘nT’ time units. Let us again assume that this can be broken
into ‘pn’ number of independent sequential tasks, each run-
ning for ‘T’ time units. As explained earlier, when the job
is submitted to the supercomputer center, and is scheduled
with the other jobs, a copy of the job is also given to the
local application-level scheduler. However, now the local
application-level scheduler forwards a copy of the job to the
local application-level schedulers on the other participating
clusters and informs the meta-scheduler about this. Each
local application-level scheduler tries to schedule the PSA
jobinit’s cluster and informs the meta-scheduler every time
it completes a task in the PSA job. The meta-scheduler ex-
plicitly exchanges information with each local application-
level scheduler to make sure that the tasks executed on one
cluster are not re-executed on the others. Once all the tasks
of the PSA job are executed (potentially in parts on the dif-
ferent clusters), all the local application-level schedulers are

Meta
Application-Level
Scheduler

A

Local
Job Queue e Scheduler

Local
Job Queue e Scheduler

v w5
- A .
3 i S
7’ . ~.
kS 1 S
R H S
s .
- !
1
App-Level I App-Level
Scheduler - Scheduler
I
./. N i ./. N
7’ \\ i 7’ \,\
¥ a i ¥ a
I
i
I

App-Level
Scheduler

AN
K N
¥ bV
Local
Job Queue 4'_‘_’{ Scheduler
Figure 3. Hierarchical application-level

schedulers for Multi-Site Scheduling

notified.

It is to be noted that this scheme does not modify the ex-
isting scheduling mechanisms at the clusters. It relies on
an external application-level scheduler which keeps track
of the current schedule of the cluster to support the “Oppor-
tune Job Shredding” model for PSA jobs. Further, in the
multi-cluster scenario, each of the clusters can have differ-
ent processing power, both in terms of the number of nodes
available and also the processing speed of the nodes.

An interesting scenario is when a PSA job is submitted
to a cluster and one of the participating clusters does not
have enough processors to support this job. For example,
let us consider that the LANL cluster, the San Diego Super-
computing Center (SDSC) and the Cornell Theory Center
(CTC) are the participating clusters. The LANL cluster has
1024 processors. It is possible that a PSA job requesting
800 processors is submitted to this cluster. However, the
Cornell Theory Center only has 512 processors and would
not be able to support this job as it is. In such a scenario,
we take advantage of the moldability of the PSA jobs to re-
assemble the tasks in the PSA job to form a 512 processor
parallel job and submit a copy to CTC.

5 Experimental Results

In this section we use a simulation based approach to eval-
uate the impacts of the two schemes, “Flooding-based Job
Shredding” and “Opportune Job Shredding”, on both the
PSA jobs and the Non-PSA jobs. We also study the impact
of the schemes on the different categories of the jobs within
the PSA and Non-PSA jobs, such as short-narrow, short-
wide, long-narrow and long-wide. The simulations for Sec-

tions 5.1 and 5.2 were carried out on a 5000-job subset of
the CTC trace from Feitelson’s archive. For Section 5.3, we
used three 1-month subsets of the CTC trace. Throughout
this section, a number of jobs using more than 8 processors
are seelcted randomly and treated as PSA jobs. In general,
the breakdown for the time taken by each task in the PSA
job is specified by the PSA job. For example, a breakdown
factor of ‘b’ means that the total runtime of the PSA jobs is
‘b’ times the runtime of each task. In other words, the PSA
job can be broken down into ‘b’ tasks along the time axis.
We chose a value of 10 for ‘b’ in all our experiments.

We have concentrated mainly on three metrics for evalu-
ating the two schemes. The first two are user-metrics: the
turn-around time and the slowdown of the job. The turn-
around time of the job is the difference between the time
when the job is submitted to the cluster and the time when
it completes its execution. The slowdown of the job is de-
fined as the ratio of the turn-around time and the runtime.

The third metric is the Loss of Capacity (LOC) of the sys-
tem. This metric is defined as zero if the number of queued
jobs is zero. Otherwise, it’s calculated as follows: If at the
current time, there are a number of jobs queued which to-
tally require ‘p’ processors and there are ‘q’ idle processors
in the cluster, then

ALOC =min{p, g} x AT, where AT is the time for which
this state lasts.

The Loss of Capacity of the system is the summation of
ALOC over the time of interest. The reason we have cho-
sen this metric instead of the Utilization metric is the nature
of the submissions of the jobs to the cluster. As described
earlier, studies have shown that the submission pattern of
jobs by users to the cluster tends to be bursty. In particular,
the number of jobs submitted tends to be high during the
day, peak somewhere in the evenings and decrease to a low
during the night [13]. Assuming that the cluster is not in a
state of super-saturation (where the number of jobs submit-
ted is far greater than the resources available, resulting in
a continuous and non-terminating increase in the job queue
length), the jobs piled during the day time can be expected
to be completed during the nights. This results in roughly
a 50% Utilization for a number of clusters and is relatively
invariant with most alternate schemes.

The results we show here correspond to exact user esti-
mates. We have also conducted experiments based on inac-
curate user-estimates. However, the trends seem similar to
the exact estimate cases and hence have been omitted from
this paper. They can be found in [23].

The values for the bars in the graphs are computed by find-
ing the difference between old metric value and new metric
value (old value- new value) and then dividing by old value
to get the relative difference. For turnaround time as well as
slowdown ,if the metric improves then the new value will be
less than old value.So a positive bar indicates that the metric

improves and vice-versa.
5.1 Flooding-based Approach

This section shows the impact of the “flooding-based
scheme” on the user-metrics for both the PSA jobs as well
as the non-PSA jobs and the overall system metrics.

Figure 4 shows the average turn-around time and the av-
erage slow-down of the PSA and the Non-PSA jobs when
5% of the jobs are PSA jobs. Although this scheme signif-
icantly improves both the user-metrics for the PSA jobs as
well as the overall system metrics such as Loss of Capacity
(Figure 7), it significantly hampers the performance of the
Non-PSA jobs.

Figures 5 and 6 show similar trends for the cases when
10% and 20% of the jobs are PSA jobs respectively. Fur-
ther, it can also be seen that as the percentage of the PSA
jobs increases, the benefit the PSA jobs are able to achieve
also tends to decrease. We can also notice a drop in the im-
provement of the turn-around time for the PSA jobs as load
increases.

Percentage decrease in Loss Of Capacity

1 12 15
Load
[m5% PSA Jobs B 10% PSA Jobs 0120% PSA Jobs|

Figure 7. Flooding-based Job Shredding:
Loss of Capacity

Though both the turn-around time and the slow-down met-
rics suffer for the Non-PSA jobs, it is to be noted that the
degradation in the slow-down is considerably higher com-
pared to that of the turn-around time. For a clearer under-
standing of the reason for this, we look at the effect of the
flooding-based approach on the various categories of the
Non-PSA jobs such as the short-wide, short-narrow, long-
wide and the long-narrow jobs.

The jobs are categorized along two dimensions: the num-
ber of processors they use and their execution time. Jobs
using fewer than 32 processors are categorized as “narrow”
and the others as “wide”. Similarly, jobs having execution
times less than one hour are categorized as “short” and the

others as “long”. Figure 8 shows the average turn-around
time and the average slow-down for the different categories
of jobs, with 5% PSA jobs. It can be seen that the “short-
narrow” jobs suffer much more than the other categories.
The reason for this is the reduction in the humber of back-
fill opportunities available for the “short-narrow” jobs. This
category of jobs typically have the most opportunities to
back-fill due to their small structure. However, due to the
PSA jobs, the multiple segments forming the PSA job flood
the network. These segments use up the holes present in the
schedule, denying the “short-narrow” Non-PSA jobs oppor-
tunities to back-fill.

Figures 9 and 10 show the category wise breakup for the
Non-PSA jobs for the cases with 10% and 20% PSA jobs,
respectively. These results again point to the conclusion that
though an approach such as this can improve the perfor-
mance of the PSA jobs and that of the overall system (for
system metrics such as the Loss of Capacity), it adversely
affects the performance of the Non-PSA jobs, especially
when the percentage of the PSA jobs is high.

5.2 Opportune Job Shredding

As mentioned earlier, the basic idea of the Opportune Job
Shredding scheme is to allow the PSA jobs to shred and
back-fill as long as they don’t hamper the back-fill oppor-
tunities for the Non-PSA jobs. This section shows the im-
pact of the “Opportune Job-Shredding scheme” on the user-
metrics for both the PSA jobs and the non-PSA jobs and the
overall Loss of Capacity of the system.

Figure 11 shows the average turn-around time and the av-
erage slow-down of the PSA and the Non-PSA jobs when
5% of the jobs are PSA jobs. It can be seen that while this
scheme continues to improve the performance of the PSA
jobs significantly, it does not adversely affect that of the
Non-PSA jobs. The degradation of the performance of the
Non-PSA jobs is less than 4% in all cases. In fact, in some
cases the better back-filling the scheme allows, results in an
improvement in performance for the Non-PSA jobs as well.

Figures 12 and 13 show the impact of the Opportune Job
Shredding scheme for the cases when 10% and 20% of the
jobs are PSA jobs respectively. It can be seen that the trend
continues even for these cases.

To fully understand the impact of the Opportune Job
Shredding scheme on the Non-PSA jobs, we’ll now look
at the impact of the scheme on the various categories of the
Non-PSA jobs such as “short-narrow”, “short-wide”, etc.
Figure 15 shows the impact of the scheme on the various
categories of the Non-PSA jobs in the case when there are
5% PSA jobs. It can be seen that neither of the categories
suffer more than 2.5% for the turn-around time and more
than 10% for the slowdown.

Figures 16 and 17 show similar results for the cases when

Percentage change in Average Response Time
(5% PSA Jobs)
80

70 4
60 -
50 -
40 A
30

% Change

20
10 4

.10 4 1 12 15

-20
Load
[TAIl Jobs B PSA Jobs 0Non-PSA Jobs|

% change

Percentage change in Average Slowdown
(5% PSA Jobs)

L

Load
[@All Jobs B PSA Jobs ONon-PSA Jobs]|

Figure 4. Flooding-based Job Shredding (5% PSA Jobs): (a) Average Response Time; (b) Average

Slow Down

Percentage change in Average Response Time
(10% PSA Jobs)

70
60 -
50
40 A
30 4
20 -

% change

10

-20
Load

[@All Jobs B PSA Jobs O Non-PSA Jobs|

% change

Percentage change in Average Slowdown
(10% PSA Jobs)

80
60
40
20 -

-20 -
40 -
-60
-80

-100

-120

Load

[TAIll Jobs BPSA Jobs O Non-PSA Jobs|

Figure 5. Flooding-based Job Shredding (10% PSA Jobs): (a) Average Response Time; (b) Average

Slow Down

Percentage change in Average Response Time
(20% PSA Jobs)

70
60 -
50 -
40 H
30 A
20 A

% change

10

-10 4 1 12 15
-20 4
-30

Load

[mAIl Jobs B PSA Jobs O Non-PSA Jobs|

% change

Percentage change in Average Slowdown
(20% PSA Jobs)

50

-50 4

-100 -

-150 -

-200

Load

[BAIl Jobs B PSA Jobs [Non-PSA Jobs|

Figure 6. Flooding-based Job Shredding (20% PSA Jobs): (a) Average Response Time; (b) Average

Slow Down

Average Response Time of Non-PSA Jobs
(5% PSA Jobs)

0 [‘

1 1.2 1.5

% Change

Load
\I:I NarrowShort B NarrowLong 00 WideShort 0 WideLong \

% change

Average Slowdown of Non-PSA Jobs
(5% PSA Jobs)

40

20

-20 A

-40

-60 -

Mﬂ

-100

Load
\D NarrowShort B NarrowLong OJWideShort DWideLong\

Figure 8. Flooding-based Job Shredding (5% PSA Jobs), Category-wise breakup: (a) Average Re-

sponse Time; (b) Average Slow Down

Average Response Time of Non-PSA Jobs
(10% PSA Jobs)

20

10 A

-10 4 1 1.2 15
220 -
.30 -
40 -
.50
.60
-70
-80 -
-90

% change

Load

‘I:I NarrowShort B NarrowLong 0O WideShort 00 WideLong ‘

% change

Average Slowdown of Non-PSA Jobs
(10% PSA Jobs)

40
20 1

20 +—

40 -
.60 -
-80 -

-100 -

-120

-140

Load
‘D NarrowShort B NarrowLong O WideShort DWideLong‘

Figure 9. Flooding-based Job Shredding (10% PSA Jobs), Category-wise breakup: (a) Average Re-

sponse Time; (b) Average Slow Down

Average Response Time of Non-PSA Jobs
(20% PSA Jobs)

% change

Load
‘D NarrowShort B NarrowLong 00 WideShort DWideLong‘

% change

Average Slowdown of Non-PSA Jobs
(20% PSA Jobs)

50
0 T T
1 12 5
50 4
-100 -

-200 1

-250 -

-150 1+ J

-300

Load
‘D Narrowshort B NarrowlLong O WideShort O WidelLong ‘

Figure 10. Flooding-based Job Shredding (20% PSA Jobs), Category-wise breakup: (a) Average

Response Time; (b) Average Slow Down

Percentage change in Average Response Time
(5% PSA Jobs)

% change

1 12 15

Load
[TAIll Jobs B PSA Jobs 0Non-PSA Jobs|

Percentage change in Average Slowdown
(5% PSA Jobs)

80
70
60 -
50 -
40
30 A
20
10

0 -

% change

1 1.2 15

Load
[BAIll Jobs B PSA Jobs T Non-PSA Jobs|

Figure 11. Opportune Job Shredding (5% PSA Jobs):

Down

(a) Average Response Time; (b) Average Slow

Percentage change in Average Response Time
(10% PSA Jobs)

% change
N

1 12 15

Load
[BAIll Jobs B PSA Jobs 0Non-PSA Jobs|

Percentage change in Average Slowdown
(10% PSA Jobs)

a (o2}
o o
L

IN
o
.

w
o

% change

1 1.2 15

Load

[ZAll Jobs mPSA Jobs 0JNon-PSA Jobs)]

Figure 12. Opportune Job Shredding (10% PSA Jobs):

Down

(a) Average Response Time; (b) Average Slow

Percentage change in Average Response Time
(20% PSA Jobs)

~

(<2}
L

w S (%))
L

% change

1 1.2 15
Load
[BAIl Jobs B PSA Jobs [Non-PSA Jobs|

Percentage change in Average Slowdown
(20% PSA Jobs)

% change

5 1 12 15

Load
[T All Jobs B PSA Jobs [Non-PSA Jobs|

Figure 13. Opportune Job Shredding (20% PSA Jobs):

Down

(a) Average Response Time; (b) Average Slow

Percentage decrease in Loss Of Capacity

N
(&)

% decrease
= N
o o
| |

=
o
L

o

o
I

1 1.2 1.5
Load
[m5% PSA Jobs M 10% PSA Jobs 020% PSA Jobs|

Percentage decrease in Loss Of Capacity
(5% PSA Jobs)

% change
N
(4]

1 1.2 15
Load
[E Cluster. W Cluster2 O Cluster3]

Figure 14. Opportune Job Shredding: Loss of
Capacity

there are 10% and 20% PSA jobs respectively. Even as the
percentage of the PSA jobs increases, the Non-PSA jobs do
not suffer greatly.

5.3 Multi-Site Evaluation

This section evaluates the Opportune Job Shredding
scheme in a multi-cluster (or multi-site) environment. As
described earlier, in a multi-cluster environment, whenever
a PSA job is submitted, a copy of it is sent to the local
Application-Level Scheduler of each of the clusters. These
Application-Level Schedulers coordinate with the meta-
scheduler to execute the different tasks of the application
over the clusters. It is to be noted that this scheme is in-
dependent of the scheduling mechanism of the individual
clusters and takes into consideration the different speeds
at which the clusters might operate. Throughout this sec-
tion, the simulated results correspond to that of three clus-
ters formed by taking three 1-month subsets from the CTC
trace. Also, to demonstrate the adaptability of the scheme
to heterogeneity in processing speeds for the different clus-
ters, we have considered the processing speeds of the three
clusters to be in the ratio 2:1:3.

Figure 18 shows the Average Response Time and the Aver-
age Slow-Down of the PSA and Non-PSA jobs in the three
clusters for the case when each cluster has 5% PSA jobs. It
can be seen that while the performance of the PSA jobs has
improved significantly, that of the Non-PSA jobs has hardly
been affected. Figures 19 and 20 show similar results for
the cases when each cluster has 10% and 20% PSA jobs re-
spectively. The Loss of Capacity of the system is given in
Figures 21 through 23.

10

Figure 21. Multi-Site Evaluation (5% PSA
Jobs): Loss of Capacity

Percentage decrease in Loss Of Capacity
(10% PSA Jobs)

1 1.2 15
Load

\D Clusterl W Cluster2 O Cluster3 \

Figure 22. Multi-Site Evaluation (10% PSA
Jobs): Loss of Capacity

Percentage decrease in Loss Of Capacity
(20% PSA Jobs)

% change

1 12 15
Load
\ @ Clusterl B Cluster2 O Cluster3 \

Figure 23. Multi-Site Evaluation (20% PSA
Jobs): Loss of Capacity

% change

Percentage Change in Average Response Time
(5% PSA Jobs)

° : 1 lL’Z—‘ l.SFl_‘

Load
\I:I NarrowShort B Narrow Long CJWideShort DWideLong\

% change

Percentage Change in Average Slowdown
(5% PSAJobs)

LF 12 15

Load
\I:I NarrowShort B NarrowLong OWideShort 0 WideLong \

Figure 15. Opportune Job Shredding (5% PSA Jobs), Category-wise breakup: (a) Average Response

Time; (b) Average Slow Down

% change

Percentage Change in Average Response Time
(10% PSA Jobs)

Load
‘D NarrowShort B NarrowLong O WideShort DWideLong‘

% change

Percentage Change in Average Slowdown
(10% PSAJobs)

Load

‘D NarrowShort B NarrowLong 0 WideShort DWideLong‘

Figure 16. Opportune Job Shredding (10% PSA Jobs), Category-wise breakup: (a) Average Response

Time; (b) Average Slow Down

% change

Percentage Change in Average Response Time
(20% PSA Jobs)

4
3 4
2 4
0 4 —

1 1|2 15
, L
_2 |
-3

Load

‘D NarrowShort B NarrowLong O WideShort 01 WidelLong ‘

% change

Percentage Change in Average Slowdown
(20% PSAJobs)

_]

|:| 1 1{2 15

Load

\D NarrowShort B NarrowLong O WideShort DWideLong\

Figure 17. Opportune Job Shredding (20% PSA Jobs), Category-wise breakup: (a) Average Response

Time; (b) Average Slow Down

11

Percentage Change in Average Response Time
(5% PSA Jobs)

90
80
70 1
60 -
50 1
40
30 1
20 A
10 4

0
-10

% change

2

i

1.
Load

B Non-PSA Jobs Clusterl O PSA Jobs Cluster2
@ Non-PSA Jobs Cluster3

i

EPSA Jobs Clusterl
CNon-PSA Jobs Cluster2 @ PSAJobs Cluster3

Percentage Change in Average Slowdown
(5% PSA Jobs)
120
100 +
80 -
[
2 60 1
[}
ey
S 40 A
X
20 1
O 4
1 1.2 15
-20
Load
@ PSA Jobs Clusterl B Non-PSA Jobs Clusterl OPSA Jobs Cluster2
O Non-PSA Jobs Cluster2 B PSAJobs Cluster3 @ Non-PSA Jobs Cluster3

Figure 18. Multi-Site Evaluation (5% PSA Jobs): (a) Average Response Time; (b) Average Slow Down

Percentage Change in Average Response Time
(10% PSA Jobs)

90
80 1
70 1
60 -
50 -
40 -

% change

20 +
10 +

1 12 15

Load

B Non-PSA Jobs Clusterl OPSA Jobs Cluster2
@ Non-PSA Jobs Cluster3

EPSA Jobs Clusterl
CONon-PSA Jobs Cluster2 BPSAJobs Cluster3

Percentage Change in Average Slowdown
(10% PSA Jobs)
120
100 -
80 1
2 60
g
S 40
o
20 A
0 4
20 | 1 1.2 15
-40
Load
@ PSA Jobs Clusterl B Non-PSA Jobs Clusterl OPSA Jobs Cluster2
O Non-PSA Jobs Cluster2 B PSAJobs Cluster3 @ Non-PSA Jobs Cluster3

Figure 19. Multi-Site Evaluation (10% PSA Jobs): (a) Average Response Time; (b) Average Slow Down

Percentage Change in Average Response Time
(20% PSA Jobs)

90
80 -
70 +
60 -
50 1
40 H
30 1
20 +
10 A

% change

1 1.2 15
Load

B Non-PSA Jobs Clusterl 0O PSA Jobs Cluster2
@ Non-PSA Jobs Cluster3

EPSA Jobs Clusterl
CNon-PSA Jobs Cluster2 B PSAJobs Cluster3

Percentage Change in Average Slowdown
(20% PSA Jobs)

120
100 -
80 1
60 -
40
20 1
04
-20 -
-40

% change

15

Load

B Non-PSA Jobs Clusterl OPSA Jobs Cluster2
@ Non-PSA Jobs Cluster3

@ PSA Jobs Clusterl
O Non-PSA Jobs Cluster2 B PSAJobs Cluster3

Figure 20. Multi-Site Evaluation (20% PSA Jobs): (a) Average Response Time; (b) Average Slow Down

12

6 Conclusionsand Future Work

A number of applications comprise of several small inde-
pendent and homogeneous tasks that need to be executed.
However, most supercomputer centers enforce a restriction
on the number of jobs a single user can submit to the clus-
ter at any time in order to ensure that the resources of the
center are not monopolized by a single user.Even if this
constraint were relaxed,while PSA scheduling systems like
APST could be set up to work in conjunction with sched-
ulers at supercomputer centers, it could result in significant
delays of other non-PSA jobs in the system. The avoid-
ance of this problem is the reason why fair-share limits are
imposed at supercomputer centers. In this paper we first
use trace-driven simulations to characterize the impact of
introducing PSA job “fragments” into a mix of non-PSA
jobs in a supercomputer center environment. We show that
non-PSA jobs are indeed adversely affected. We then pro-
pose a new approach, termed as Opportune Job Shredding,
to significantly overcome the degradation of non-PSA jobs,
while still allowing for considerable improvement of PSA
jobs. We demonstrate that the proposed scheme improves
the slowdown time of PSA’s by up to 70% and the over-
all loss of capacity of the system by up to 21%. Not only
does the scheme avoid significant degradation of the per-
formance of the non-PSA jobs in all cases, but it even im-
proves their performance in some cases. We also propose an
extension of the previously proposed “Multiple Simultane-
ous Requests” scheme combining it with the Opportune Job
Shredding scheme allowing Parameter Sweep Applications
to be executed in parts on remote clusters. We plan next to
incorporate and test the Opportune Job Shredding strategy
using the Maui scheduler [30] . After testing, we plan to
evaluate it on one of the cluster systems at the Ohio Super-
computer Center [7], where PSA jobs represent a significant
part of the system load.

References

[1] A. Streit. On Job Scheduling for HPC-Clusters and
the dynP Scheduler. In HiPC, pages 58-67, 2001.

[2] D. Abramson, J. Giddy, and L. Kotler. High perfor-
mance parametric modeling with nimrod/G: Killer ap-
plication for the global grid. pages 520-528.

[3] O. Arndt, B. Freisleben, T. Kielmann, and F. Thilo.
A comparative study of online scheduling algorithms
for networks of workstations. Cluster Computing,
3(2):95-112, 2000.

[4] H. Casanova, T. Bartol, J. Stiles, and F. Berman. Dis-
tributing MCell Simulations on the Grid. The Interna-

13

tional Journal of High Performance Computing and
Supercomputing Applications, 15(3), Fall 2001.

H. Casanova, G. Obertelli, F. Berman, and R. Wol-
ski. The AppLeS parameter sweep template: User-
level middleware for the grid. pages 75-76, 2000.

(5]

[6] H. Casanova, G. Obertelli, F. Berman, and R. Wolski.
The AppLeS Parameter Sweep Template: User-Level
Middleware for the Grid. In Supercomputing, Novem-

ber 2000.
[7]
(8]

Ohio Supercomputer Center. http://www.osc.edu/.

S. H. Chiang and M. K. Vernon. Production job
scheduling for parallel shared memory systems. In
Proceedings of International Parallel and Distributed
Processing Symposium, 2002.

[9] D. Jackson and Q. Snell and M. J. Clement. Core Al-
gorithms of the Maui Scheduler. In JSSPP, pages 87—
102, 2001.

[10] D. Lifka. The ANL/IBM SP Scheduling System. In
JSSPP, pages 295-303, 1995.

[11] D. Talby and D. Feitelson. Supporting Priorities and
Improving Utilization of the IBM SP Scheduler Using
Slack-Based Backfilling. In Proceedings of the 13th
International Parallel Processing Symposium, 1999.

[12] C. Ernemann, V.Hamscher, U. Schwiegelshohn,

R. Yahyapour, and A. Streit. On advantages of grid

computing for parallel job scheduling.

[13] D. G. Feitelson. Logs of real parallel workloads

from production systems. URL.: http://www.cs.huiji.

ac.il/labs/parallel/workload/.

[14] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn,

K. C. Sevcik, and P. Wong. Theory and Practice in

Parallel Job Scheduling. In Job Scheduling Strategies

for Parallel Processing. Springer Verlag, 1997.

[15] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and

S.Tuecke. Condor-g: A computation management

agent for multi-institutional grids. In Proc. Intl. Symp.

On High Performance Distributed Computing, 2001.

[16] J. Gehring and T. Preiss. Scheduling a metacomputer

with uncooperative subschedulers. In In Proc. JSSPP,

pages 179-201, 1999.

[17] J. Gehring and A. Streit. Robust resource management

for metacomputers. In High Performance Distributed

Computing, pages 105-111, 2000.

[18] V. Hamscher, U. Schwiegelshohn, A. Streit, and
R. Yahyapour. Evaluation of job-scheduling strategies
for grid computing. In Proc. Grid *00, pages 191-202,
2000.

[19] H. A. James, K. A. Hawick, , and P. D. Coddington.
Scheduling independent tasks on metacomputing sys-

tems. In Parallel and Distributed Systems, 1999.

[20] J.P. Jones and B. Nitzberg. Scheduling for parallel su-
percomputing: A historical perspective of achievable
utilization. In 5th Workshop on Job Scheduling Strate-

gies for Parallel Processing, 1999.

[21] J.R.Stiles, T.M. Bartol, E.E. Salpeter, and M.M.
Salpeter. Monte carlo simulation of neuromuscular
transmitter release using mcell,a general simulator of
cellular physiological processes. In Computational

NeuroScience, 1998.

[22] K. Aida. Effect of Job Size Characteristics on Job
Scheduling Performance. In JSSPP, pages 1-17,
2000.

[23] R. Kurian, P. Balaji, and P. Sadayappan. Opportune
Job Shredding: An Efficient for Scheduling Parameter
Sweep Applications. Technical report, The Ohio State

University, July 2003.

[24] A. W. Mu’alem and D. G. Feitelson. Utilization, pre-
dictability, workloads, and user runtime estimates in
scheduling the ibm sp2 with backfilling. In IEEE
Transactions on Parallel and Distributed Systems, vol-

ume 12, pages 529-543, 2001.

[25] P. J. Keleher and D. Zotkin and D. Perkovic. Attack-
ing the Bottlenecks of Backfilling Schedulers. Cluster

Computing, 3(4):245-254, 2000.

[26] D. Perkovic and P. J. Keleher. Randomization, spec-
ulation, and adaptation in batch schedulers. Cluster

Computing, 3(4):245-254, 2000.

[27] R. Kettimuthu and V. Subramani and S. Srinivasan and
T. B. Gopalsamy and P. Sadayappan. Selective Pre-
emption Strategies for Parallel Job Scheduling. Pro-
ceedings of the International Conference on Parallel

Processing, 2002.

[28] Grid Research and UCSD Innovation Laboratory.

http:// grail.sdsc.edu.

[29] G. Sabin, R. Kettimuthu, A. Rajan, and P. Sadayappan.
Scheduling of parallel jobs in a heterogeneous multi-
site environment. In In Proc. JSSPP, 2003.

[30] Maui Scheduler. http://supercluster.org/maui/.

14

[31] SETI@home. http:// setiathome.ssl.berkeley.edu.

[32] J. Skovira, W. Chan, H. Zhou, and D. Lifka. The
EASY - LoadLeveler API Project. In JSSPP, pages
41-47,1996.

[33] S. Smallen, W.Cirne, J.Frey, F.Berman, R.Wolski,
M.Su, C.Kesselman, S.Young, and M.Ellisman. Com-
bining workstations and supercomputers to support
grid applications.

[34] Q. Snell, M. Clement, D. Jackson, , and C. Gregory.
The performance impact of advance reservation meta-
scheduling. In D. G. Feitelson and L. Rudolph, edi-
tors, Workshop on Job Scheduling Strategies for Paral-
lel Processing, volume 1911 of Lecture Notes in Com-
puter Science. Springer-Verlag, 2000.

[35] V. Subramani, R. Kettimuthu, S. Srinivasan, and P. Sa-
dayappan. Distributed job scheduling on compu-
tational grids using multiple simultaneous requests.
In Proceedings of the 11th High Performance Dis-
tributed Computing Conference, 2002.

[36] S. S. Vadhiyar and J. J. Dongarra. A metascheduler
for the grid. In 11-th IEEE Symposium on High Per-

formance Distributed Computing, July 2002.

