
Efficient Collective Operations using Remote Memory Operations on VIA-Based
Clusters

�

Rinku Gupta
�

Pavan Balaji
�

Dhabaleswar K. Panda
�

Jarek Nieplocha
�

�
The Ohio State University�

guptar, balaji, panda � @cis.ohio-state.edu

�
Pacific Northwest National Laboratory

jarek.nieplocha@pnl.gov

Abstract
High performance scientific applications require efficient

and fast collective communication operations. Most collec-
tive communication operations have been built on top of
point-to-point send/receive primitives. Modern user-level
protocols such as VIA and the emerging InfiniBand archi-
tecture support remote DMA operations. These operations
not only allow data to be moved between the nodes with
low overhead but also allow the user to create and provide
a logical shared memory address space across the nodes.
This feature demonstrates potential for designing high per-
formance and scalable collective operations. In this paper,
we discuss the various design issues that may be the ba-
sis of a RDMA supported collective communication library.
As a proof of concept, we have designed and implemented
the RDMA-based broadcast and the RDMA-based allreduce
operations. For RDMA-based broadcast, we get a benefit of
14%, when compared to send/receive-based broadcast for
4KB data size on a 16 node cluster. We also introduce a
new reduce algorithm called as the Degree-k tree-based re-
duce algorithm. Combining the RDMA mechanism with the
new reduce algorithm shows a benefit of 38% for 4 byte mes-
sages and 9% for 4KB messages on a 16 node cluster for the
allreduce operation. We also introduce analytical models
for broadcast and allreduce to predict the performance of
this design for large-scale clusters. These analytical mod-
els yield a performance benefit of about 35-40% for 4 bytes
and around 14% for 4KB messages for 512 and 1024 node
clusters for the allreduce operation.

1 Introduction
High Speed interconnection networks and exponentially

increasing microprocessor performance have made Net-
works of Workstations (NOWs) an increasingly appealing
alternative to mainstream supercomputing for a variety of
computational needs of computation intensive applications.
Commonly known as Cluster Computing systems, these col-
lections of commodity based components offer a high per-
formance to price ratio to the end user, attributing to it’s
immense success. High Performance Parallel Programs on
clusters often involve a lot of point-to-point and collective

�
The OSU part of this Research is supported in part by Department

of Energy’s Grant #DE-FC02-01ER25506, and National Science Founda-
tion’s grants #EIA-9986052 and #CCR-0204429.

communication between them in addition to the computa-
tion being carried out.

Past works in the collective communication area have pri-
marily focused on development of optimized and scalable
algorithms on top of point-to-point send/receive operations
[3]. The send/receive model requires explicit host inter-
vention at both the sender and the receiver side. Modern
user-level protocols such as the Virtual Interface Architec-
ture (VIA) [8] and the InfiniBand Architecture (IBA) [1]
offer a variety of models for data transfer. Together with
the send/receive model, they also support the Remote Di-
rect Memory Access (RDMA) model. The concept of Re-
mote DMA is used for direct transfer of data between user
spaces without any intervention from the receiving host. In
other words, the RDMA operation is transparent to the re-
ceiver. Remote memory capability through RDMA opera-
tions allows the programmer to define a set of buffers across
the nodes of a cluster which can be used as a logical shared
address space to exchange data efficiently. This raises the
following open question. Can remote memory operations
be used to design and implement efficient collective com-
munication operations?

In our earlier work, we provided RDMA support for im-
plementing fast barrier synchronization [7]. In this paper,
we take up the challenge of exploring ways to design data-
intensive collective operations such as broadcast and allre-
duce using the RDMA mechanism. We analyze various
design issues and alternatives for supporting such collec-
tive operations with RDMA supported shared memory. For
the broadcast and allreduce operations, we demonstrate how
these issues have been resolved in practice in the design of
high-performance collective communication libraries.

We introduce a new reduce algorithm called the Degree-k
tree-based reduce algorithm. The implementation of allre-
duce using this new algorithm along with the RDMA mech-
anism gives significant performance benefits compared to
the traditional send/receive-based allreduce operation. This
benefit was found to be 38% and 9% for small (4 bytes)
and large (4KB) messages respectively on a 16 node Gi-
gaNet cLAN cluster. To allow MPI applications take ad-
vantage of the new implementation, we linked the RDMA-
based broadcast and allreduce algorithms with MVICH (a

1

popular MPI implementation for VIA) [4].
We also present analytical models to find the optimal

RDMA-based allreduce algorithm for a given configura-
tion and data size, and to estimate the performance of the
RDMA-based broadcast operation for a given data size. We
use this to predict the performance benefits of using the
RDMA-based collective operations for large clusters. The
analytical model predicts a 20% improvement in the broad-
cast latency for 512-node systems. The predicted perfor-
mance for RDMA-based allreduce shows a benefit of about
35-40% for small messages of 4 bytes and around 14% for
messages of 4KB size for 512 and 1024 node clusters. These
results demonstrate that efficient collective operations can
be built on next generation clusters with networks (such as
InfiniBand and Quadrics) supporting RDMA-based mecha-
nisms.

The remaining part of the paper is organized as follows.
Section 2 provides an overview of VIA [8]. In Section 3, we
discuss the basic design issues. The RDMA-based broad-
cast and allreduce, along with their design issues are dis-
cussed in Section 4. Section 5 provides the analytical mod-
els for broadcast and allreduce. We present the performance
results (experimental and analytical) in Section 6 and con-
clude the paper in Section 7.

2 Overview of Virtual Interface Architecture
The Virtual Interface Architecture (VIA) has been stan-

dardized as a low latency and high bandwidth user-level
protocol for System Area Networks (SANs). VIA provides
every consumer process a protected and directly accessible
interface to the network named as a Virtual Interface (VI).

Each VI is a communication endpoint, consisting of send
and receive queues. Applications post requests to the send
and receive queues in the form of VI send and receive de-
scriptors. VIA requires that buffers used in the communi-
cation be registered/pinned. The registered buffer address is
communicated using the VI descriptor. VIA specifies two
types of data transfer facilities: the Send/Receive messag-
ing model and the Remote Direct Memory Access (RDMA)
model. In the Send/Receive model, each send descriptor
on the local node has to be matched with a receive descrip-
tor on the remote node. Failure to do so may result in the
message being dropped or a reliable connection broken. In
the RDMA model, the initiator specifies both the virtual ad-
dress of the local user buffer and that of the remote user
buffer. In this model, a descriptor does not have to be posted
on the receiver side corresponding to every message. VIA
provides the RDMA Write and RDMA Read features. In
the RDMA Write operation, the node writes directly to the
remote node’s memory. Similarly in the RDMA Read oper-
ation, the node reads directly from the remote node’s mem-
ory. The RDMA Read is an optional VIA feature. Hence,
the work done in this paper exploits only the RDMA Write
feature of VIA.

Since the introduction of VIA, many software and hard-
ware implementations of VIA have become available. B-

VIA [2], M-VIA [10] and GigaNet VIA [9] are among these
implementations. In this paper, we use GigaNet VIA, a
hardware implementation of VIA for experimental evalua-
tion.

3 Design Issues for RDMA-based Collective
Communication Operations

The idea behind using RDMA for collective communi-
cation is to use the illusion of shared memory created by
RDMA. The RDMA mechanism and memory registration
constraints, imposed by VIA open up several major issues
for designing a RDMA-based collective communication li-
brary. In this section, we discuss the design issues and
present some solutions. In the subsequent sections we dis-
cuss the design choices for the particular collective commu-
nication operation and its implementation.

3.1 Buffer Registration and Address Exchange
The communication buffers need to be registered in VIA.

In our scheme, we have the option to register the buffers
either statically before the operation or dynamically during
the operation.
Static Buffer Registration: We statically register a con-
tiguous region in memory for each communication group
(when the communication group is being created) and type
of collective operation. This contiguous region is split into
fixed size buffers (blocks). The blocks are used in a con-
secutive order. Since the memory allocated is contiguous,
only the address of the first block needs to be communi-
cated to the other nodes, during the initialization phase. The
length of the buffer space is the same for all the nodes in
the communication group for a given operation. Since the
buffers are pre-registered during initialization, the data has
to be copied from these registered buffers to the user buffers
when they become available. Hence, there is a copying cost
involved.
Dynamic Buffer Registration: In the dynamic registration
scheme, we allow the use of non-contiguous buffers. The
buffers are registered and the buffer address is exchanged
at the start of the collective operation instance. We have the
additional overhead of an extra round-trip time for the buffer
address communication with the destination set in the col-
lective operation before sending the actual data to the des-
tination set. However, in this scheme, the user buffers are
available during the operation and can thus be registered.
There is no additional copying cost involved. This scheme
is also called the rendezvous scheme.

For all our RDMA-based collective operation implemen-
tations, we use the static buffer management scheme when
the data size is less than 5KB. For smaller messages less
than 5KB, the memory copy time is less and hence the
static scheme proves to be more beneficial than the dynamic
scheme (which has an address exchange overhead). For
greater data size, the copying time increases drastically and
hence using the dynamic scheme proves to be more optimal.
MVICH, which is an implementation of MPI on VIA, also
uses the dynamic registration scheme for messages greater

2

than 5KB. For messages lesser than 5KB, MVICH commu-
nicates using the send/receive model.

3.2 Data Validity at the Receiver end
RDMA write is receiver transparent. It does not require

that the receiver post a descriptor or perform any action in
anticipation of the incoming data and the receiver process
receives no indication that any new data has been written.
When the destination needs the data it goes to the memory
location and fetches the data from there by performing a lo-
cal read operation. Thus, we need a mechanism for indicat-
ing to the receiver that the data in the memory is valid data.
This can be done in multiple ways. We briefly discuss some
of these methods in [7]. For our implementations, we indi-
cate data validity by a byte, having a special value, which is
attached to the end of the data when it is sent to the destina-
tion node. The destination knows when and how much data
is arriving and thus it checks the value of the byte at the end
of data and determines the validity of the data.

3.3 Safely reusing the buffers
In the static buffer allocation scheme, we register a fixed

number of buffers which may be reused when needed. The
buffers are contiguous in nature and are used contiguously.
A receiver belonging to a specific communication group
performing a particular collective operation, knows exactly
which buffer is going to be reused by the sender. Before
reusing the first buffer, the sender waits for a notification
from the receiver. The receiver sends the notification by
RDMA writing a known value at a special location in the
notification buffer.

4 RDMA-based Broadcast
In this section, we briefly discuss the design choices with

relation to the RDMA-based broadcast. For detailed discus-
sion of all the following subsections, refer to [6].
4.1 The Broadcast Algorithm

The broadcast collective operation distributes the data
present at one node (called as the root) to all the other nodes
in the communicator. Higher level libraries use various al-
gorithms to implement the broadcast operation. Libraries
like MVICH use the binomial algorithm which is very ef-
ficient for small-large clusters. Some libraries use the lin-
ear method for implementing broadcast in very small clus-
ters. Currently, binomial broadcast is implemented using
the send/receive primitives. We implement the same algo-
rithm in RDMA and we compare the performance of the
two. The binomial broadcast follows a recursive method,
wherein the destination node on receiving the data, becomes
one of the source nodes and forwards the data to other
nodes. Figure 1 shows binomial broadcast in an 8 node
cluster. ������� steps are needed for performing the binomial
broadcast, where � is the number of nodes. The data struc-
tures and the working of the algorithm is discussed in the
following subsections.
4.1.1 Registration of buffers : Message Size � 5KB
We divide a contiguous registered memory (called broad-
cast buffer) into fixed blocks of size block size. The blocks

P0

Third StepSecond StepFirst Step

P1 P3P2 P5P4 P6 P7

Figure 1. Broadcast using Binomial Algorithm
for 8 node cluster

are numbered from 0 onward. In addition to the broadcast
buffer, every node also reserves a buffer called notification
buffer which is used to indicate the safe reuse of the broad-
cast buffers. The size of the notification buffer in bytes is
equal to the number of nodes in the communication group
involved in the broadcast operation. The address of the
broadcast and notify buffers are exchanged during the ini-
tialization time. The buffers are initialized to -1 during the
initialization time.
4.1.2 Registration of buffers : Message Size � 5KB
Since we adopt the rendezvous dynamic buffer registration
approach for messages larger than 5KB, which is similar to
the one adopted by MVICH, we discuss the remainder of
the section with respect to the static broadcast scheme for
messages lesser than 5KB. We choose 5KB as the boundary
for the static registration scheme to facilitate fair compari-
son of our RDMA-based collective communication with the
MVICH send/receive-based collective communication.
4.1.3 Data Validity at the Receiver end
To understand the working of the RDMA-based broadcast,
consider Figure 2 with 4 nodes P0, P1, P2, P3, where node
P0 is the root and the broadcast instance shown is between
the nodes P0 and P2.

For every communication group, we have a static counter
called broadcast counter which is incremented by 1 for ev-
ery broadcast operation, by every node within that com-
munication group. Consider the first broadcast of data
size block size/2 bytes. The broadcast counter for the first
broadcast is set to 1. The sender appends the broadcast
counter byte at the end of the data to be written. The root
P0 can RDMA write the data of size block size/2 + 1, which
includes the broadcast counter, to block 0 of node P2. For a
communication group, every node is involved in the collec-
tive operation. So, every node can keep track of the number
of blocks used for that particular collective operation.

The data is written in a bottom-fill manner. To write 8
bytes in a 10-byte block in a bottom-fill manner, we start
writing these 8 bytes from the 2nd byte onward in the block.
Hence the data is always filled in the lower portion of the
block.

Since the receiver shares the communication group with
the sender, the broadcast counter at the sender and receiver
will have the same value. Thus, the receiver can poll for the
broadcast counter on the last byte of the received block and
check for the validity of the data.

If the data to be sent is greater than the block size, the
data is split up into blocks of size block size - 1 with the
broadcast counter appended to each block of data. Figure

3

−1 −1−1 −1−1−1−1 −1−1−1−1 −1 −1−1−11

���
���

���
���

������������������������������������

������������������������������������
������������������������������������

������������������������������������

	�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

������������������������������������
�
�
�
�

�
�
�
�

������������������

������������������������������������

������������������������������������1 1

2

2

2 2

2

2

First
Bcast

Second
Bcast

P0 P1 P2 P3

Figure 2. Two Consecutive RDMA-based
Broadcast instances followed by a notifica-
tion

2 also shows the second broadcast of 2 * block size bytes,
which divides the data into three blocks of size block size -
1, block size - 1 and 2 bytes respectively, with the broadcast
counter of 2 attached for data validity. An intermediate node
forwards the message only after it receives all the blocks of
that message.

Writing large messages by breaking them into blocks at
the lowest level enables pipelining of messages and overlap-
ping of the copy to the user buffers at the destination. How-
ever, there is a trade-off involved between the block size
and number of RDMA writes. It takes 1 RDMA write to
send each block. If the block size is too large, the number
of RDMA writes will be low but the copying cost to the
buffers will be high. If the block size is small, the copy-
ing cost will be low, but the number of RDMA writes and
contention at the switches and NICs will be high. The pro-
cessing of a large number of RDMA writes might offset the
benefit obtained by overlapping the copies. Thus, it is desir-
able to find an optimal block size where the cost of process-
ing multiple RDMA writes does not kill the benefit achieved
by overlapping memory copies. In our results section, we
evaluate our RDMA-based broadcast algorithm with differ-
ent block sizes to obtain an optimal one.

4.1.4 Buffer reusing
To bring about safe reuse of the broadcast buffer blocks, we
use the pre-registered notification buffers. The sender, be-
fore sending the data, waits for the receiver to write a special
value into its notification buffer. Figure 2 shows the notifi-
cation from node P2 to node P0, before the third broadcast,
which requires the reuse of the first buffer. Before writing
to the notification buffer, the receiver resets the last byte
(broadcast counter) of each block in its broadcast buffer, to
clear the broadcast counter values of the previous broadcast
operation.

Writing data in a bottom-fill manner requires us to reset
only the last byte of each block. If data was written starting
from the top of the block, the broadcast counter would have
been at an arbitrary location depending on the size of data
being sent and hence all the bytes of all blocks would have
to be reinitialized which may be an expensive operation.

P0
P0

P1 P3P2
P1 P3P2

(a) (b)

[1] [1]
[1]

[1]

[1]
[2]

Figure 3. RDMA-based allreduce: (a) Degree-
1, (b) Degree-3

4.2 RDMA-based AllReduce
AllReduce is a global reduction operation which combines

values from different nodes based on the reduction operation
and communicates the result back to all the nodes involved
in the operation. It is generally implemented as a combi-
nation of the reduce operation (where the result is present
at the root node) and the broadcast operation. The reduce
algorithm can be implemented in different ways. Current li-
braries like MVICH implement reduce using a recursive bi-
nomial algorithm. We introduce a new algorithm for reduce
called the Degree-k algorithm. The new algorithm when
implemented for the allreduce operation with the RDMA
mechanism was found to give good performance.

Definition: An Degree-k tree-based Reduce defines a tree
where any node can receive messages from at most

�
nodes

in any step of the reduce operation. The variable
�

is a
(power of 2) - 1 value. For a cluster of size � , where � is a
power of 2, we can use all those Degree-k tree-based reduce
schemes, where

�
is (power of 2) - 1 and

� � � . The bino-
mial reduce algorithm is similar to the Degree-1 tree-based
reduce algorithm. Since, most computing clusters generally
have a power of 2 size, we constrain the Degree-k tree-based
reduce scheme to a cluster having power of 2 nodes.

We implement a Degree-k RDMA-based allreduce as
a combination of the Degree-k reduce and the binomial
broadcast with the RDMA mechanism. To understand the
Degree-k RDMA-based allreduce concept, let us consider a
4 node cluster. An allreduce operation on such a cluster can
be implemented using Degree-1 or Degree-3 RDMA-based
allreduce scheme. Figure 3 shows the tree for 4 nodes P0,
P1, P2, and P3 having ids 0, 1, 2 and 3 respectively. The
square brackets indicate the step number for that node. In a
Degree-1 RDMA-based allreduce scheme, every node will
receive data from at-most 1 node in each step. A receiver
node chooses the order of evaluating the data based on the
ascending order of the ranks of the sending nodes. Hence, in
the first step P1 and P3 send data to P0 and P2 respectively,
which perform the computation. The computed result is for-
warded by P2 to P0. The final result, calculated at P0, is then
broadcast to all the other nodes involved in the operation.

In a Degree-3 RDMA-based allreduce (Figure 3b), P0
waits for P1, P2 and P3 to send data and then computes the
result. P0 chooses the order of evaluating the data based on
the ascending order of the ranks of the sending nodes.

A Degree-3 RDMA-based allreduce for a 32 node clus-
ter has the tree as described in Figure 4. There is a trade-
off involved between the number of steps in the Degree-k

4

[1][1][1]

[1] [1] [1] [1] [1] [1] [1] [1] [1]

[1] [1] [1]

[1] [1] [1] [1] [1] [1] [1] [1] [1]

[2] [2] [2]

[2]
[2] [2]

[3]

Figure 4. Demonstration of steps in a Degree-
3 RDMA-based allreduce for 32 nodes

RDMA-based allreduce collective operation and the over-
head incurred by the node in performing the reduction oper-
ation. For example, in a Degree-1 RDMA-based allreduce
scheme for a 4 node cluster, there are 2 steps and in each
step, a receiver node receives only 1 message and hence per-
forms only 1 operation. In a Degree-3 RDMA-based allre-
duce scheme for a 4 node cluster, there is 1 step but the
receiver nodes does 3 operations. So, depending upon the
number of nodes, number of steps and the number of oper-
ations involved, we can choose different Degree-k RDMA-
based allreduce algorithms.

The design solutions for all the Degree-k RDMA-based
allreduce algorithm are the same. We explain the design
solutions for a Degree-1 RDMA-based allreduce algorithm
in the following few subsections.

4.2.1 Registration of buffers: Message Size � 5KB
We allocate a contiguous registered section of memory
called allreduce buffers, split into block size of (5K + 1)
bytes, because 5KB is the maximum size of data that can
be transferred in the static scheme. Also, the total memory
region reserved need not be greater than � ����� � �����	� � � ,
where � is the number of processes in the communicator.
This is because, in the Degree-(N-1) RDMA-based allre-
duce algorithm, a maximum of ��

� processes can write to
a receiver node. Figure 5a shows the 4 nodes P0, P1, P2 and
P3 with ids 0, 1, 2, 3 respectively, each having 4 contiguous
blocks of memory reserved and registered for the allreduce
operation.

4.2.2 Registration of buffers: Message Size � 5KB
For messages greater than 5KB, we follow the rendezvous
scheme (described in the broadcast section). The remainder
of the allreduce discussion will be for messages less than
5KB.

4.2.3 Data Validity at the Receiver end
Consider the node P1 sending data to node P0 and node P3
sending data to node P2. The node P1, with id 1, RDMA
writes the data to block #1 of the receiver’s allreduce buffer.
A node always writes the data to the block having the same
number as its id. Any node with any id can write to any
other node’s allreduce buffer at a location indicated by its

id. This indicates to the receiver the identification of the
sender of the data and also enables an ordered evaluation of
the data.

Node P1 sends the entire data in 1 single RDMA write to
the node P0. Similar to the broadcast operation, the allre-
duce operation has a static allreduce counter which is ap-
pended to the block of data when it is sent. The data is
written in a bottom-fill manner. The receiver performs the
required operation and the result is stored in the same loca-
tion as that of the latest received data from the node having
the greatest id. Figure 5a shows node P1 with id 1 and node
P3, with id 3, writing the data to node P0’s block #1 and to
node P2’s block #3 respectively. Assuming this is the first
allreduce, the allreduce counter is set to 1.

Figure 5b shows node P0 and node P2 performing the op-
eration and writing the intermediate results in blocks #1 and
block #3 respectively. Data is not broken down into smaller
blocks and sent. The overhead of copying, assembling and
packing data has been found to be larger than the overhead
of sending the entire data in a single RDMA write opera-
tion [5, 6].

In the second step of the Degree-1 RDMA-based allre-
duce, node P2 with id 2 RDMA writes its latest computed
result to block #2 of node P0’s allreduce buffer, with the
allreduce counter of 1 attached at the end of the data. P0
performs the operation on the newly received data from
node P2 and its own computed result obtained in the pre-
vious step. The result of this operation is stored in block #2
at node P0’s allreduce buffer. The result is copied by node
P0 to its user receive buffer after its done with its final com-
putation. The result is broadcast from this user buffer to all
the nodes.
4.2.4 Buffer reusing
There is no extra step needed to indicate safe buffer reusabil-
ity because in an allreduce operation for a given communi-
cator, the second allreduce operation starts only after all the
nodes have received the broadcast results of the first opera-
tion.

5 Analytical Models
In this section we present some important parameters of

the analytical model for RDMA-based binomial broadcast
and the Degree-k RDMA-based allreduce. The analytical
models are described very briefly due to space constraints.
For detailed understanding of the analytical models, refer
to [6, 5]. These models help us estimate the performance of
collective operations for large scale systems.

5.1 Binomial RDMA-based broadcast Analytical
model

A message transfer in a binomial RDMA-based broadcast
operation consists of many events and overheads in the com-
munication stack. At the sender side, there is a copying
overhead due to the need to copy data into registered buffers
(Tc), the MPI library overhead (Tm), the cost involved in
posting the send descriptor (Td), DMAing the data (Ts) from
the host, the processing by the NIC (Tn) and the time for the

5

P0 P1 P2 P3

Data Recvd

Data at P0

2

2
Recvd from
P3

Data

P2
Data at
Source

2
1

2

2

1
2

2

2

 Blocks of
 Size (5K+1)

Source

from P1

P0 P1 P2 P3

Source
Data at P0

P2
Data at
Source

Computed

4

Data at P2
4

2

1
4

1
4

2

2

2

Computed
Data at P0

Figure 5. (a) Step 1 of Degree-1 RDMA-based allreduce, (b) Reduce Computation at P1 and P2

acknowledgment message (Ta). The data is then transmit-
ted (Tt) to the destination. If the destination is connected to
the source via a switch, the messages are sequentialized at
that switch. Data can be broken into smaller blocks and sent
which enables pipelining and overlaps the memory copy-
ing with the sending side events. When the receiver NIC
receives the data, it processes it and obtains the destination
memory address (in case of RDMA write), to which the data
is then DMAed. Copying into the user buffer takes place af-
ter the destination has forwarded the data to the other nodes
if necessary. Tt and Tc depend upon the total bytes that are
being communicated. We assume that Tn is less than Ts,
which is true for most current generations systems. The an-
alytical model for RDMA-based broadcast gives timing es-
timates for broadcast taking place with varying block sizes.
The total broadcast time where the message is broken into
num blocks, can be represented by the equation: Tm + Td +
2*(Ts + Tn + Tc) + num*(Tt + Ta). For detailed explana-
tion, refer to [6].

5.2 Analytical model for RDMA-based allreduce
For a given set of power of 2 nodes, we have different

degree-k algorithms available. Using the analytical model,
we can determine an optimal degree

�
, for a given number of

nodes and data size on the basis of the parameters discussed
in the previous section. In addition to these parameters, we
also have to take into account the time spent in performing
the reduction operation on the given data size. This total
time can be indicated by To. The assumptions made in the
previous section hold true for allreduce too. Typically, for
large messages To is much lesser as compared to Tt. How-
ever this is not true for small messages having small counts.

A message transfer in an allreduce operation consists of
similar events as described in the previous section. The only
difference being that, once the data is DMAed by the desti-
nation NIC, the reduction operation is performed. The result
can then be broadcast to all the nodes in the communica-
tion group. The analytical model has various cases based
on the values of the above parameters. A detailed analysis
of the analytical model along with the timings diagrams and
pseudo-code can be found in [6, 5].

For the degree-k RDMA-based allreduce case, the receiver
performs reduction operation based on the order of ids, start-
ing with the data sent by the node with the lowest id. When
many nodes are performing an RDMA write to a single des-
tination simultaneously, there might be contention at the

NIC. Thus, the order in which the messages arrive at the
destination NIC and hence in the destination buffer is in-
determinate. Thus, if a NIC is waiting for allreduce data to
arrive from the lowest id node, there is a fair probability that
the data might not arrive first. Hence, the analytical model
for RDMA allreduce gives the best and the worst time esti-
mates. The best time estimate assumes that the required data
is the first to arrive and assumes the ideal network condition.
The worst time estimate assumes that the required data is the
last to arrive due to NIC and switch contention. It also as-
sumes that the NIC processing and the DMA startup can’t be
overlapped due to sharing of the system bus. The best case
equation for very large messages is given as: 2*Tc + (Total
Number of Steps)*[2*(Ts + Tn) + Tm + Td + Tt*(No. of
Sending Nodes in that step) + To]. For detailed explanation
and the other cases such as the analytical model for small
messages, etc., refer to [6].

6 Performance Evaluation
In this section, we discuss the results that have been ob-

tained for RDMA-based broadcast and RDMA-based allre-
duce. We evaluated our implementations on a cluster of
16 nodes, each with a 33MHz PCI bus, 1.0GHz Pentium
III machines, 512MB of Main memory and Linux version
2.2.17. The machines are connected using a GigaNet 5300
switch. In addition to the experimental results, we also
present results for larger systems using the analytical model.
6.1 Broadcast Performance

The RDMA-based binomial broadcast is compared with
the send/receive-based binomial broadcast, provided by the
MVICH-1.0 implementation of MPI. The broadcast latency,
averaged over 5000 iterations, is calculated between the root
node and the last leaf node receiving the message. The last
leaf is typically chosen to be the one having the maximum
depth from the root in the binomial tree structure.

6.1.1 RDMA-based broadcast V/s Send/Receive-based
broadcast on a 16 node cluster

Using the RDMA scheme, a large message is broken into
multiple blocks depending upon the block size. MVICH-
1.0, in the send/receive-based binomial broadcast, sends
data in blocks of 1KB. To ensure fair comparison, we
tested the RDMA-based binomial broadcast with different
block sizes starting with 1025 (1 extra byte for the counter)
bytes.

Figure 6 shows a comparison of RDMA-based broadcast
with block sizes of ������� , �����	� ,
����

 and �	����� bytes and the

6

send/receive-based broadcast for small messages for a clus-
ter of 16 node. Small messages from 4-1024 bytes show the
same timings as they use a single 1025 byte block to write
to the remote node. The difference can be seen in Figure
7. We see that to transmit 4096 bytes with block size of
1025 bytes, we need 4 blocks. For higher block sizes, the
number of RDMA writes decrease and so do the timings. A
block size of 3073 bytes gives the most optimal result for
all message sizes from 1025 to 5000 bytes. RDMA-based
binomial broadcast for all the given block sizes gives better
performance as compared to the send/receive-based bino-
mial broadcast.

With RDMA-based binomial broadcast with block size of
3073 bytes, we get a benefit of around 19% for smaller mes-
sage of 4 bytes. For larger messages we see a benefit of
around 14% for 4608 bytes.

We also use the broadcast analytical model, presented in
the previous section, to estimate the timings for RDMA-
based binomial broadcast with varying block sizes. Figure 8
shows the comparison of the analytically obtained RDMA-
based broadcast with the experimentally obtained RDMA-
based broadcast using block size of 3073 bytes for a 16 node
cluster. For all data sizes (4-4096 bytes), the analytically ob-
tained results closely match the experimental ones with an
error rate of below 10%.
6.1.2 RDMA-based broadcast V/s Send/Receive-based

broadcast on large clusters
We use this analytical mode to estimate the performance of
RDMA-based binomial broadcast on 512 and 1024 node
systems. We compare the estimated RDMA-based broad-
cast timings with send/receive-based broadcast for the same
cluster size. Extrapolating the timings obtained for broad-
cast between a pair of nodes, we obtain the latency for the
send/receive-based broadcast for large clusters of size �
to be approximately log(N) * t1, where t1 is the time for
send/receive-based broadcast between 2 nodes.

Figures 9 and 10 show the comparison graphs for RDMA-
based broadcast and send/receive-based broadcast for 512
and 1024 nodes. The RDMA-based broadcast timings have
been taken with an optimal block size of 3073 bytes. For
512 nodes, we achieve a benefit of about 21% for 4KB mes-
sages and for smaller messages of 4 bytes, we get a perfor-
mance benefit of 16%. For 1024 nodes, for 4KB message
size, we again obtain a performance benefit of about 21%
and for smaller messages a benefit of 16%.

6.2 RDMA-based AllReduce Performance
The timings for allreduce are an average of 5000 itera-

tions. The operation used was MPI SUM with the data type
MPI INT of size 4 bytes and the count of the elements was
varied from 1 (4 bytes) to 1024 (4096 bytes).

6.2.1 RDMA-based allreduce V/s Send/Receive allre-
duce on a 16 node cluster

In this paper, we introduced the analytical model for degree-
k RDMA-based allreduce. Depending upon the network
topology, the analytical model gives the best and the worst

time estimates for the allreduce operation. We have evalu-
ated the degree-k RDMA-based allreduce analytical model
for 4, 8, 16 nodes with 4-4608 byte data sizes. The follow-
ing values have been chosen for the system dependent pa-
rameters of RDMA-based allreduce. Tt per byte = 0.010 � s,
Ts = 2 � s, Tc per byte = 0.0027 � s, Tn = 1.52 � s, Td =
0.6 � s, Tm = 1.3 � s. Tt and To are calculated depending on
the total number of bytes and count of the operation.

The following results for a cluster of 16 nodes can be re-
ferred in [6]. For 16 nodes, we can use the degree-1, degree-
3, degree-7, degree-15 RDMA-based allreduce schemes.
We have obtained the best and worst case timings for all
these cases for message sizes varying from 4-4608 bytes.
Further, we have compared and proved that the experimen-
tal results obtained for all the above degree-k RDMA-based
allreduce schemes, lie between the best and the worst case
timings predicted by our analytical model. The largest de-
viation from the actual timings obtained is around 8% for
512 bytes in the degree-15 analytical model for a 16 node
cluster. For small data sizes like 4 bytes, the analytical
model gives the degree-3 RDMA-based allreduce scheme
as the optimal scheme. For larger messages, the analyti-
cal model shows degree-1 RDMA-based allreduce to be the
most optimal one. This is because in the degree-3 RDMA-
based allreduce case, 3 nodes write to 1 node and 3 op-
erations are done at the receiving node. As the data size
increases, the number of operations increase and computa-
tion becomes very expensive. The degree-1 RDMA-based
allreduce fares better as the computation is distributed to a
greater number of the nodes. We verified both sets of re-
sults practically. [6] contains comparison graphs showing
the experimental results obtained by all the above degree-k
RDMA-based algorithms for a 16 node cluster. We sum-
marize the results in Figure 11. For a 4 node cluster, the
degree-3 RDMA-based allreduce scheme performs well for
smaller messages till 1024 bytes. For an 8 node cluster, we
obtain a slightly improved performance if we use degree-7
RDMA-based allreduce for very small messages. For mes-
sages above 1024 bytes, degree-1 RDMA-based allreduce
always gives the best performance.

Figure 12 compares the results of send/receive-based bino-
mial allreduce, most optimal degree-k RDMA-based allre-
duce and degree-1 RDMA-based allreduce. The most op-
timal degree-k RDMA-based allreduce uses degree-3 al-
gorithm for small messages and degree-1 algorithm for
messages greater than 1KB. The degree-1 allreduce is ex-
actly the same as the binomial allreduce algorithm. We
see that the RDMA-based binomial algorithm (i.e degree-
1) always performs better than the send/receive-based bi-
nomial algorithm. The degree-3 RDMA-based algorithm
outperforms both the send/receive-based and RDMA-based
binomial allreduce algorithms for small messages (4-1024
bytes). On a 16 node cluster, we obtain a 38% benefit for
4 byte messages, when we use the degree-3 RDMA-based
allreduce. For larger messages of size 4KB, we get a 9%

7

improvement on using the optimal degree-1 RDMA-based
allreduce scheme. The benefits obtained are due to an opti-
mal algorithm implemented with an efficient RDMA mech-
anism.
6.2.2 RDMA-based allreduce V/s Send/Receive-based

allreduce for large clusters
We evaluated the analytical model for clusters of 512 and
1024 nodes. An analysis of the best and worst case tim-
ings shows that degree-3 RDMA-based allreduce performs
optimally for small messages (4-1024 bytes) and degree-1
RDMA-based allreduce performs the best for larger mes-
sages (1025-5000 bytes) (Figure 11). Thus we can gener-
alize by saying that a degree-3 RDMA-based allreduce al-
gorithm should give good performance for smaller data size
(from 4 to 1024 bytes) and a degree-1 RDMA-based allre-
duce scheme can be used for larger data sizes while imple-
menting the reduce part of the allreduce collective opera-
tion.

We also use the RDMA-based allreduce analytical model
to predict the performance achievable in large clusters. We
obtain the send/receive-based binomial allreduce latency by
extrapolating the allreduce latency between 2 nodes. If the
time for allreduce between 2 nodes is t1, then the time taken
for the same allreduce between � nodes, which involves
����������� steps is approximately log(N) * t1.

Figure 13 shows the comparison between the estimated
send/receive-based binomial, the best and the worst case of
the most optimal degree-k RDMA-based allreduce and the
degree-1 (binomial) RDMA-based allreduce. We use the
most optimal degree-3 algorithm for message sizes lesser
than 1KB and degree-1 algorithm for messages greater than
1KB in the degree-k RDMA-based allreduce. The analyti-
cal models predicts a 14% performance benefit of the best
case of the most optimal degree-k RDMA-based allreduce
for message size of 4KB and around 40% for small mes-
sages of 4 bytes. When send/receive-based binomial allre-
duce is compared with the worst case of the most optimal
degree-k RDMA-based allreduce, we still obtain a benefit
of about 35% for 4 byte messages and 14% for 4KB mes-
sages. The degree-3 RDMA-based allreduce outperforms
the RDMA-based binomial as well the send/receive-based
binomial algorithm for small messages. Similar timings are
obtained for 1024 nodes (Figure 14). The analytical model
predicts a benefit of 41% for 4 bytes and 14% for 4KB.

7 Conclusions and Future work
Traditionally, collective operations have been imple-

mented on the send/receive message passing primitives.
In this paper, we introduce a novel method to implement
fast broadcast and allreduce communication operations on
VIA based clusters using RDMA operations. We imple-
mented RDMA-based broadcast using the binomial algo-
rithm which gives a 14% benefit for a 16 node cluster for
4608 bytes and 19% for 4 byte messages as compared to the
send/receive-binomial broadcast algorithm. For the allre-
duce operation, we introduced a new concept of degree-

k tree-based allreduce algorithms which when combined
with the RDMA mechanism gives improved performance as
compared to the send/receive-based algorithms. A compar-
ison of the most optimal degree-k RDMA-based allreduce
with the send/receive-based binomial allreduce gives us a
benefit of about 38% benefit for a small data size of 4 bytes
and about 9% for data size of 4KB for a 16 node cluster. We
also presented analytical models for broadcast and allreduce
that give an estimate of the broadcast time for large clusters
and the most optimal degree-k RDMA-based allreduce algo-
rithm that can be used for a given cluster and data size. We
have used the analytical model to predict the performance
benefits achievable by our RDMA implementation of allre-
duce on large clusters. The predicted performance shows a
benefit of about 35-40% for small messages of 4 bytes and
around 14% for messages of 4KB for 512 and 1024 node
clusters.

In future, we plan to perform in-depth analysis of the
global buffer management for other collective operations.
We plan to explore and develop efficient algorithms dealing
with user-defined communicators used in context with these
collective operations. We also plan to extend this framework
to the emerging InfiniBand architecture.

8 Acknowledgments
The work at Pacific Northwest National Laboratory was

performed under the auspices of the U.S. Department of
Energy (DOE). Pacific Northwest National Laboratory is
operated for DOE by Battelle Memorial Institute. This
work was supported by the Center for Programming Models
(www.pmodels.org) for Scalable Parallel Computing spon-
sored by the Mathematical, Information, and Computational
Science Division of DOE’s Office of Computational and
Technology Research.

References
[1] Infiniband Trade Association. http://www.infinibandta.org.

[2] P. Buonadonna, A. Geweke, and D. E. Culler. BVIA: An Implemen-
tation and Analysis of Virtual Interface Architecture. In the Proceed-
ings of SuperComputing, 1998.

[3] R. Geijn, D. Payne, L. Shuler, and J. Watts. A Streetguide to Collec-
tive Communication and its Application. Jan 1996.

[4] Future Technology Group. MVICH: MPI for Virtual Interface Archi-
tecture. In http://www.nersc.gov/research/FTG/mvich.

[5] Rinku Gupta. M.S. Thesis: Efficient Collective Communication us-
ing Remote Memory Operations on VIA-Based Clusters, The Ohio
State Univeristy, August 2002.

[6] Rinku Gupta, Pavan Balaji, Dhabaleswar K. Panda, and Jarek
Nieplocha. Efficient Collective Communication using Remote Mem-
ory Operations on VIA-Based Clusters. Technical Report OSU-
CISRC-1/03-TR03, The Ohio State University, December 2002.

[7] Rinku Gupta, Vinod Tipparaju, Jarek Nieplocha, and Dhabaleswar K.
Panda. Efficient Barrier using Remote Memory Operations on VIA-
Based Clusters. In IEEE Cluster Computing, 2002.

[8] http://www.viarch.org/. Virtual Interface Architecture Specifications.

[9] GigaNet Incorporations. cLAN for Linux: Software Users’ Guide.
2001.

[10] M-VIA: A High Performance Modular VIA for Linux. http://www.
nersc.gov/ research/FTG/via.

8

0

20

40

60

80

100

120

4 8 16 32 64 128 256 512 1024

La
te

nc
y

(u
se

cs
)

Bytes

RDMA 4097 bytes/block
RDMA 3073 bytes/block
RDMA 2049 bytes/block
RDMA 1025 bytes/block

Send/Recv

Figure 6. RDMA-based V/s
Send/Receive-based broad-
cast comparison (4-1024
bytes) - 16 Node Cluster

100

150

200

250

300

350

2048 4096

La
te

nc
y

(u
se

cs
)

Bytes

RDMA 4097 bytes/block
RDMA 3073 bytes/block
RDMA 2049 bytes/block
RDMA 1025 bytes/block

Send/Recv

Figure 7. RDMA-based V/s
Send/Receive-based broad-
cast comparison (1025-4608
bytes) - 16 Node Cluster

0

50

100

150

200

250

4 16 64 256 1024 4096

La
te

nc
y

(u
se

cs
)

Bytes

Analytical-3073 bytes/block
Practical-3073 bytes/block

Figure 8. RDMA-based bino-
mial broadcast Analytical V/s
Experimental comparison (4-
4608 bytes) - 16 node Cluster

0

100

200

300

400

500

600

4 16 64 256 1024 4096

La
te

nc
y

(u
se

cs
)

Bytes

RDMA Bcast
Send/Recv Bcast

Figure 9. RDMA-based V/s
Send/Receive-based broad-
cast Estimations - 512 node
Cluster

0

100

200

300

400

500

600

4 16 64 256 1024 4096

La
te

nc
y

(u
se

cs
)

Bytes

 RDMA Bcast
Send/Recv Bcast

Figure 10. RDMA-based V/s
Send/Receive-based broad-
cast Estimations - 1024 node
Cluster

4−256 Bytes 256−1024 Bytes >1024 Bytes

Degree−3 Degree−3

Degree−3 Degree−3

Degree−3 Degree−3

Degree−3

Degree−3Degree−3

Degree−1

Degree−1

Degree−1

Degree−1

Degree−1

Degree−7

16 nodes

512 nodes

1024 nodes

8 nodes

4 nodes

Figure 11. Choosing the Right
algorithm for varying configu-
rations

0

100

200

300

400

500

600

4 16 64 256 1024 4096

La
te

nc
y

(u
se

cs
)

Bytes

Binomial-Send/Recv
Binomial(Degree-1) RDMA

Optimal Degree-k RDMA

Figure 12. Send/Receive-
based binomial, RDMA-based
binomial and the most optimal
degree-k RDMA-based allre-
duce comparison - 16 node
Cluster

0

200

400

600

800

1000

1200

4 16 64 256 1024 4096

La
te

nc
y

(u
se

cs
)

Bytes

Optimal degree-k RDMA Worst
Optimal degree-k RDMA Best
Binomial(Degree-1)-RDMA
Binomial-Send/Recv

Figure 13. Send/Receive-
based binomial, RDMA-based
binomial and the most optimal
degree-k RDMA-based allre-
duce Estimations - 512 node
Cluster

0

200

400

600

800

1000

1200

1400

4 16 64 256 1024 4096

La
te

nc
y

(u
se

cs
)

Bytes

Optimal Degree-k RDMA Worst
Optimal Degree-k RDMA Best
Binomial(Degree-1)-RDMA
Binomial-Send/Recv

Figure 14. Send/Receive-
based binomial, RDMA-based
binomial and the most optimal
degree-k RDMA-based allre-
duce Estimations - 1024 node
Cluster

9

