
MPI+ULT: Overlapping Communication and
Computation with User-Level Threads

Huiwei Lu Sangmin Seo Pavan Balaji

Mathematics and Computer Science Division
Argonne National Laboratory, Argonne, IL 60439, USA

{huiweilu, sseo, balaji}@anl.gov

Abstract—As the core density of future processors keeps
increasing, MPI+Threads is becoming a promising program-
ming model for large scale SMP clusters. Generally speaking,
hybrid MPI+Threads runtime can largely improve intra-node
parallelism and data sharing on shared-memory architectures.
However, it does not help much on inter-node communication
due to the inefficient integration of existing communication
and threading libraries. More specifically, existing MPI+Threads
runtime systems use coarse-grained locks to protect their thread
safety, which leads to heavy lock contention and limit the
scalability of the runtime. While kernel threads are efficient for
intra-node parallelism, we found that they are too heavy for com-
putation/communication overlap in an MPI+Threads runtime
system. In this paper we propose a new way for asynchronous
MPI communication with user-level threads (MPI+ULT). By
enabling ULT context switching inside MPI, MPI communication
in one ULT can overlap with computation or communication in
other ULTs. MPI+ULT can be used for communication hiding
in various scenarios, including MPI point-to-point, collective
and one-sided calls. We use MPI+ULT in two applications, a
high-performance conjugate gradient benchmark and a genome
assembly application, to show how MPI+ULT can help effectively
hide communication and reduce runtime overhead. Experiments
show that our method helps improve the performance of these
applications significantly.

I. INTRODUCTION

The computing power on a single CPU chip continues to
grow exponentially as more cores are squeezed into one chip.
For example, Knights Landing, Intel’s next-generation Many
Integrated Core architecture, will have more than 60 cores on a
single chip. While this increased parallelism continues to pro-
vide performance improvements for single-node performance,
it will also put more pressure on the communication network.
As communication overhead grows with the number of cores,
the scalability of future large-scale scientific applications is
likely to be limited by communication. Although during the
past decade the bandwidth of interconnect networks has in-
creased, their latency has experienced only limited improve-
ment since it is bound by the speed of light. One can hide
this communication latency with computation, but asynchrony
will be needed with multiple levels of concurrency [1].

MPI provides nonblocking routines to overlap commu-
nication and computation. Its benefits have been explored
by several applications [2], [3], [4]. Recently, the MPI-3.0

standard has added support for nonblocking collectives [5], [6],
further extending the use of MPI nonblocking operations to
applications with collective communication patterns [7]. How-
ever, the support of asynchrony in MPI is still not complete.
Some MPI one-sided functions, such as MPI_Win_Flush,
still do not have corresponding nonblocking APIs.

Another possible solution is to use MPI+Threads. Each
thread will do computation and communication independently,
thus increasing the concurrency and achieving computation
and communication overlap. However, most previous work [8]
has focused primarily on using threads to increase the par-
allelism of intra-node computation; little investigation has
been done on the use of threads for computation/communi-
cation overlap. The problem of MPI+Threads lies in thread
safety. Current MPI implementations either do not support
MPI_THREAD_MULTIPLE or support it only at a preliminary
level with a coarse-grained lock. Recent work shows heavy
lock contention in MPI+Threads runtime [9], limiting its use
by the community.

In this paper we propose MPI+ULT, a new approach to
overlap communication and computation in MPI with user-
level threads (ULTs). ULT provides thread semantics in user
space, which makes it lightweight at thread creation and yield-
ing. With ULT, overlap of communication and computation
can be achieved easily at a low cost. The idea is to create
multiple computation and communication tasks in different
ULTs; if one ULT is blocked in a communication task, MPI
runtime will detect it and context switch to another ULT
to make progress. In this way, we can keep the CPU busy
doing useful work rather than waiting the blocked communi-
cation to finish. MPI+ULT provides several advantages over
existing runtime systems. Compared with nonblocking MPI
calls, MPI+ULT provides better programmability by providing
modularity in computation/communication overlap. Compared
with MPI+Pthreads and MPI+OpenMP, MPI+ULT provides
asynchronous communication without additional overhead on
hardware resources or added parallel complexity.

We propose a new thread level for MPI:
MPI_THREAD_ULT, to clarify the case where only
one kernel thread will execute but multiple ULTs may
call MPI functions with no restrictions. This thread
level is different from MPI_THREAD_SERIALIZED

and MPI_THREAD_MULTIPLE, as ULTs are able to overlap
different MPI calls without executing concurrently.

We evaluate MPI+ULT with several microbenchmarks on
point-to-point, collective and one-sided MPI operations. Re-
sults show that the overhead of using ULT for blocking MPI
calls is close to or even lower than their nonblocking counter-
parts. Moreover, there are no nonblocking MPI functions for
one-sided synchronization. With MPI+ULT, one can execute
MPI one-sided synchronization asynchronously, thus provid-
ing comprehensive support for communication/computation
overlap for all types of MPI calls.

We use MPI+ULT to improve the communication perfor-
mance in HPCG [10], a high-performance conjugate gradient
benchmark. HPCG includes two key communication patterns:
global collective communication and neighborhood communi-
cation. With MPI+ULT, both patterns can be easily wrapped in
a ULT to overlap with computation. Experiments on an Intel
CPU-based cluster show that HPCG using MPI+ULT gets a
performance improvement of 19.8% over MPI-only version on
2,048 cores because of communication hiding.

We use MPI+ULT to improve the performance of
SWAP [11], a parallel genome assembly application for pro-
cessing massive sequence data on thousands of cores. By
replacing Pthreads with ULT in the original algorithm, we
reduce the overhead of threads and eliminate the need for
locks in MPI runtime. The resulting MPI+ULT implementa-
tion is between 2.0 and 6.3 times faster than MPI+Pthreads
implementation, depending on the number of cores used.

The rest of the paper is organized as follows. Section II
introduces some background. Section III describes the design
and implementation of MPI+ULT. Section IV presents mi-
crobenchmarks results for MPI+ULT, and Section V shows
how MPI+ULT can be used in applications. Section VI dis-
cusses related work, and Section VII summarizes our conclu-
sions and briefly discusses future work.

II. BACKGROUND

A. Overlapping Communication and Computation

Asynchronous communication can improve application scal-
ability and hide communication latency. The MPI standard
defines nonblocking communication routines to improve ap-
plication performance by overlapping communication and
computation. Nonblocking point-to-point communication was
defined in MPI-1. Nonblocking collective communication was
added to MPI-3 recently [5], [6]. These interfaces provide
a basic building block at the API level, achieving overlap
for a single operation, but lack a systematic way to overlap
communication and computation together.

An alternative mechanism is to use threads for overlap.
But this approach would require an MPI implementation
that offers MPI_THREAD_MULTIPLE support. Unfortunately,
current MPI implementations either do not support this thread
level or support it only preliminarily with a global lock that
leads to heavy contention, limiting the adoption of threads in
MPI in practice.

tim
eline

ULT1 do
computation, start a
MPI send

Context switch to
ULT2, ULT1
communication
in background

Context switch back
to ULT1, ULT2
communicate in
background

ULT1

ULT2

ULT1

Computation Communication

Fig. 1: Overlap computation and communication with ULT.

B. User-Level Threads

User-level threads provide thread semantics in user space.
Compared with kernel threads, ULT is more lightweight. Cre-
ation and yielding can be done at a low cost because they do
not require system calls. In this paper, we use ULT to denote a
user-level thread, while using kernel thread, POSIX thread or
thread to denote a kernel thread. ULT can be implemented with
coroutines. Coroutines [12] are a generalization of routines. A
coroutine enables explicit suspend and resume of its progress
by preserving execution state. Some languages such as Python
and Go [13] provide coroutines for asynchronous I/O. Fig. 1
shows how to use ULT for computation and communication
overlapping.

The execution model of ULT is cooperative timesharing.
Multiple ULTs may be mapped to the same kernel thread,
where ULTs get executed by interleaving with each other. The
model uses context to save the contents of CPU registers and
stack space. Each ULT gets executed by context switching to
each other. ULT can provide a thread abstraction in order to
group related communication and computation together, thus
providing better modularity for programs. Its stack can be used
to store temperary results and simplify some programming
tasks. In this paper we focus on a “fork-join” ULT model with
three functions: ult_fork, ult_join, and ult_yield.
In this model ult_fork creates a ULT; ult_join waits
a ULT to finish; and ult_yield causes an ULT to yield
execution to other ULTs.

C. MPI+X Programming Models

Threads allow the runtime to better adapt to the increasing
core density in cluster nodes. Thus, the “MPI+X” model
is considered a promising programming model for future
extreme-scale machines, where MPI works complementarily
with threads to provide efficient inter-node communication and
intra-node computation.

The current MPI standard supports four thread levels for
thread safety: MPI_THREAD_SINGLE, where only one thread
will execute; MPI_THREAD_FUNNELED, where the process
may be multithreaded but only the main thread will make MPI
calls; MPI_THREAD_SERIALIZED, where the process may
be multithreaded and multiple threads may make MPI calls,
but only one at a time: MPI calls are not made concurrently

from two distinct threads (all MPI calls are “serialized”); and
MPI_THREAD_MULTIPLE, where multiple threads may call
MPI, with no restrictions. However, the standard generally
assumes that the thread package used with MPI is similar to
POSIX threads, but does not consider the case of user-level
threads carefully.

D. MPI Progress

Current MPI libraries do not offer true asynchronous
progress. MPI runtime either needs an additional kernel thread
for making asynchronous progress or needs to periodically call
an MPI function (e.g., MPI_Test) to advance all outstanding
operations for round-transition of collective operations. In
practice, the user needs to insert calls in computation to
periodically poll the MPI runtime in order to make progress
on communication. For brevity, this polling is not shown in
the microbenchmarks and applications in the paper.

III. MPI+ULT

A. New MPI Thread Level for ULT

The current MPI standard [5] defines the interaction be-
tween MPI calls and threads but assumes the thread pack-
age is similar to POSIX threads. It does not cover the
case when ULT is involved. There are two scenarios: ULTs
can be either created on different kernel threads or all on
the same kernel thread. For the first case, MPI should use
MPI_THREAD_MULTIPLE because different ULTs may ex-
ecute concurrently. However, for the second case, the current
MPI does not have a proper thread level for it. We cannot use
MPI_THREAD_SERIALIZED, which will not allow switch-
ing between ULTs while calling an MPI function like in Fig. 1.
We can use MPI_THREAD_MULTIPLE, but this level adds a
substantial overhead to MPI runtime. Given that ULT on the
same kernel thread will not execute concurrently, it should be
distinguished from kernel thread to avoid the lock cost when
using MPI_THREAD_MULTIPLE.

To distinguish the above case, we propose a new level
of thread support in MPI: MPI_THREAD_ULT, where
only one kernel thread will execute but multiple ULTs
may call MPI functions with no restrictions. Compared
with MPI_THREAD_SERIALIZED, MPI_THREAD_ULT
provides the opportunity for overlapping of different
MPI calls. Compared with MPI_THREAD_MULTIPLE,
MPI_THREAD_ULT uses ULT instead of POSIX threads. In
MPI_THREAD_MULTIPLE, in order to protect the critical
section in MPI library, each MPI call will acquire a lock
before entering the library. With MPI_THREAD_ULT, since
ULTs are not concurrently executed, this lock can be avoided.
Note that when multiple ULTs execute on multiple kernel
threads, we do not use MPI_THREAD_ULT but have to
use MPI_THREAD_MULTIPLE, as different ULTs can
execute concurrently. This new level, MPI_THREAD_ULT,
is proposed to help MPI runtime to distinguish the case
specifically when multiple ULTs execute on the same kernel
thread but can overlap different MPI calls without executing
concurrently.

1 int main()
2 {
3 ult_fork(fn_thread, ¶m, &thread);
4 ult_yield();
5 /* do independent computation */
6 ult_join(thread);
7 }
8
9 void fn_thread()

10 {
11 MPI_Send(buf, count, MPI_CHAR, dest, tag

, comm);
12 /* other computation or communication */
13 }

Listing 1: Example of using ULT with MPI for
communication/computation overlap (MPI_Send)

B. Using MPI+ULT to Overlap Computation with Communi-
cation

ULT provides an effective way for fast context switch
between different tasks. By integrating ULT with MPI, the
runtime can provide a lightweight mechanism for computa-
tion/communication overlap. Applications can use different
ULTs for different computation and communication tasks
and can overlap computation and communication by context
switching between them.

Listing 1 shows an example of how to use ULT for com-
putation/communication overlap. The main function forks a
ULT called thread, which will execute fn_thread to
do MPI_Send. It then yields to the new ULT to execute
MPI_Send. Inside the MPI runtime, the issued messages in
MPI_Send are checked by the progress engine. If the checked
messages are still on the fly, the progress engine will yield to
other ULTs in order to make effective use of this waiting time.
In this case, the ULT thread yields back to the main thread
to do computation while waiting for MPI_Send to finish, thus
achieviing overlap of computation and communication. With
fn_thread, there is no restriction on which MPI call or how
many MPI calls can be used. It can be blocking, nonblocking,
collective or one-sided communication MPI calls. Moreover,
multiple MPI calls can be made inside fn_thread. The data
dependence is provided by ult_fork and ult_join. In
this example, if the user wants to change the content of buf,
it should be placed after ult_join.

C. Implementing MPI+ULT

The idea of MPI+ULT is to fork multiple ULTs for different
computation and communication tasks and to do a context
switch when one ULT is polling in a blocking MPI call.
By switching to other ULTs, the time of waiting for the
polling to finish can be used effectively. In order to enable
the integration, MPI runtime needs to be aware of the ULT
library and be able to do the context switch at the appropriate
time.

Wrapper-Based MPI Runtime: ULT can be integrated
with MPI in several ways. One way is to use MPI wrappers
to convert a blocking call to a nonblocking equivalent and do
ULT yielding while waiting for the nonblocking call to finish.

Since changes are made on top of MPI, the MPI runtime does
not need to be modified, and this approach can be applied to
different MPI implementations. However, every MPI function
call needs to be modified. A function that does not have a
nonblocking equivalent will not be able to use this approach.

ULT-Aware MPI Runtime: Another approach is to inte-
grate ULT tightly inside the progress engine of MPI runtime,
where MPI keeps issuing messages and polling the status of
requests. When there is a blocking call inside the progress
engine, the runtime will yield. The disadvantage of this
approach is that it needs to modify the MPI runtime to get
it work.

We choose the second approach to implement MPI+ULT
because it has several advantages. First, it has a potentially
lower overhead than the first approach. As we explained in
Section II-D, MPI needs to poll the progress engine in order
to make progress on sending and receiving messages. With
the first approach, runtime will yield after each polling. With
the second approach, MPI internally will decide how many
times MPI should poll the progress engine before yielding,
thus reducing the yielding cost. It will benefit MPI collective
calls because one collective call will need multiple polls.

Second, MPI blocking calls have been implemented and op-
timized for a long time. The nonblocking calls have just been
implemented, and some of them are still not well optimized.
For example, we will later see in microbenchmark tests that
MPI_Alltoall using ULT will have a lower overhead than
MPI_Ialltoall does (Section IV-D).

Third, the second approach provides an additional advantage
that it supports MPI blocking calls that do not have nonblock-
ing equivalent yet (e.g., MPI_Win_flush), thus providing
more comprehensive support for MPI calls.

User Code

Tim
e

Runtime

ULT1 MPI_Send

ULT1 starts send request

ULT1 polls the progress engine

ULT1 context switch

ULT2 computation

ULT2 context switch

ULT1 polls the progress engine

ULT1 finishes send request

ULT1 finishes MPI_Send

Fig. 2: Timeline of MPI_Send with ULT-aware MPI runtime.
ULT is integrated with MPICH’s progress engine and provides
overlap for different ULTs.

Fig. 2 illustrates how ULT is integrated with the progress
engine of MPI runtime (here, MPICH). The figure shows part
of the timeline of Listing 1, where ULT1 denotes thread
and ULT2 denotes main. After ULT1 started MPI_Send,

the runtime starts a send request and then polls the request
in the progress engine. While waiting for the polling to
finish, ULT1 context switches to ULT2 to do computation in
ULT2. After ULT2 finishes its computation, it then context
switches back to the position where ULT1 was polling. After
it confirms that the message has been sent, ULT1 finishes
this send request and returns to the user code. The context
switch between ULT1 and ULT2 enables the runtime to
make use of the busy polling time, thus providing effective
computation/communication overlap.

IV. MICRO-BENCHMARK RESULTS

We designed microbenchmarks to measure the thread over-
head in MPI and the potential overlap in ULT-aware MPI calls,
including point-to-point, collective, and one-sided tests.

A. Experiment Setup

We conducted our benchmarks on an Intel cluster, named
Blues, at the Argonne Laboratory Computing Resource Center.
Blues consists of 310 nodes connected with QLogic inter-
connect, each with two Sandy Bridge Pentium Xeon with
64 GB RAM. Our MPI+ULT library is based on MPICH
3.1.3 with TCP netmod. We use Qthreads [14] as our ULT
library. Here ult_fork, ult_join, and ult_yield
correspond to qthread_fork, qthread_readFF, and
qthread_yield. We choose Qthread because it is one of
the most portable user-level thread libraries.

We use MPI_Wtime to measure the elapsed time. When
measuring point-to-point MPI calls, several warm-up messages
were issued before the real measurement started. When mea-
suring collective calls, MPI_Barrier is called to limit the
interprocess skew before every measurement. Both MPI-only
nonblocking calls and MPI+ULT use an interval of 100 µs
to poll MPI for progress (see Section II-D). The overhead
of a ULT-aware MPI call denotes the time that is spent in the
ULT function and in the network stack. It includes forking the
threads, polling the progress engine, and joining the threads.

B. Overhead of Kernel Threads vs. ULT

We use the test of MPI_PROC_NULL [15] to measure
the threading overhead in the MPICH code in the ab-
sence of any network communication. If a process exe-
cutes a send with destination MPI_PROC_NULL, MPI will
enter this send call, and return immediately. The test is
to measure the costs of entering an MPI call for differ-
ent thread configurations. Pthreads and ULT-multiple are
configured to use MPI_THREAD_MULTIPLE with “Global”
critical-section granularity. ULT-single is configured to use
MPI_THREAD_ULT. Fig. 3 shows the aggregate message rate
of the sending threads or ULT as a function of the number of
threads or ULTs. In the case of ULT-single, we use one kernel
thread inside MPI and create multiple ULTs inside the kernel
thread. Its performance is almost identical to that of MPI-
only using one process because ULT does not need a lock to
enter an MPI function. With Pthreads, however, there is a
considerable decline in message rate because different threads

 0

 10

 20

 30

 40

 50

 60

1 2 4 8 16

M
es

sa
ge

 ra
te

 (m
illi

on
s

/ s
)

Thread or ULT count

MPI-only (no thread)
ULT-single (multiple ULTs, single kernel thread)

Pthreads (no ULT, multiple kernel threads)
ULT-multiple (multiple ULTs, multiple kernel threads)

Fig. 3: Message rate for a multithreaded process sending to
MPI_PROC_NULL.

 1

 10

 100

 1000

 10000

1 2 4 8 16 32 64 128 256

Ti
m

e
(u

s)

Data size (KB)

MPI_Send
MPI_Isend

MPI_Send w/ ULT

Fig. 4: Overhead of blocking, nonblocking, and ULT MPI send
on 2 nodes.

are competing to acquire the critical section on entry to an
MPI function, which serializes the access of threads and causes
lock contention. In the case of ULT-multiple, we use multiple
ULTs executing on multiple kernel threads. We use 16 ULTs
in total but distribute them evenly on kernel threads. It suffers
the same problem of lock contention as Pthreads and has
more overhead to schedule different ULTs on different kernel
threads, so its performance is similar to or even worse than
that of Pthreads. Note that Pthreads and ULT-multiple use
more hardware resources than ULT-single but in fact have a
lower message rate because of the lock contention.

C. Overlap in Point-to-Point Communication

Fig. 4 shows the overhead of MPI send using different
approaches. As expected, the overhead of MPI_Isend is al-
ways smaller than that of MPI_Send. As the data size grows,
the performance gap between MPI_Isend and MPI_Send
becomes larger. The overhead of MPI_Send using ULT is
more than twice as much as the overhead of MPI_Isend.
The reason is that ULT adds additional thread creation and
yielding cost. As the data size becomes larger, however, the
overheads become close because the cost of ULT becomes
relatively small compared with the communication overhead

1 MPI_Win_allocate(win_size, ..., &win_get);
2 MPI_Win_allocate(win_size, ..., &win_acc);
3 ...
4 MPI_Win_lock_all(0, win_get);
5 MPI_Win_lock_all(0, win_acc);
6 for (i = 0; i < num_iter; i++) {
7 ...
8 MPI_Get(buf, num_elem, MPI_INT, target,

target_disp, num_elem, MPI_INT,
win_get);

9 MPI_Win_flush(target, win_get);
10
11 do_comp(buf, num_elem);
12
13 MPI_Accumulate(buf, num_elem, MPI_INT,

target, target_disp, num_elem,
MPI_INT, MPI_SUM, win_acc);

14 MPI_Win_flush(target, win_acc);
15 ...
16 }
17 MPI_Win_unlock(win_get);
18 MPI_Win_unlock(win_acc);
19 ...
20 MPI_Win_free(&win_get);
21 MPI_Win_free(&win_acc);

Listing 2: Micro-benchmark code for one-sided
communication

itself. The gap between MPI_Send and MPI_Send using
ULT shows the maximum potential overlap that can be used
for computation.

D. Overlap in Collective Communication

Fig. 5 shows the overhead of blocking, nonblocking, and
ULT MPI collective communication. In all three collec-
tive communications (MPI_Bcast, MPI_Allgather, and
MPI_Allreduce), the overhead of nonblocking MPI calls
is always smaller than the overhead of doing MPI calls
using ULT. For MPI_Alltoall, however, the overhead of
MPI_Alltoall using ULT is the smallest. The reason is that
the algorithm for blocking MPI_Alltoall has been well
optimized during the lifespan of MPICH compared with the
newly added MPI_Ialltoall. These results show that the
overhead of MPI collective communication with ULT is close
to or even less than using nonblocking collectives directly.

E. Overlap in One-Sided Communication

To see the benefit of MPI+ULT in one-sided commu-
nication, we used a microbenchmark that mainly conducts
MPI_Get, computation, and MPI_Accumulate. Listing 2
shows a simplified code for the microbenchmark. First, we
create two windows, called win_get and win_acc. Each
process contributes the same amount of memory to create win-
dows. Then, two windows are locked, and each process carries
out the main loop where one-sided communication and compu-
tation occur. Since buf obtained from MPI_Get is used in the
computation function, do_comp, MPI_Win_flush at line
9 is called to complete the outstanding MPI_Get operation.
Similarly, buf is used in the next iteration of for loop,
and thus MPI_Win_flush at line 14 is invoked to complete

 1

 10

 100

 1000

 10000

1 2 4 8 16 32 64 128 256

Ti
m

e
(u

s)

Data size (KB)

MPI_Bcast
MPI_Ibcast

MPI_Bcast w/ ULT

 1000

 10000

 100000

 1e+06

 1e+07

1 2 4 8 16 32 64 128 256

Ti
m

e
(u

s)

Data size (KB)

MPI_Allgather
MPI_Iallgather

MPI_Allgather w/ ULT

 100000

 1e+06

 1e+07

 1e+08

1 2 4 8 16 32 64 128 256

Ti
m

e
(u

s)

Data size (KB)

MPI_Alltoall
MPI_Ialltoall

MPI_Alltoall w/ ULT

 1

 10

 100

 1000

 10000

 100000

1 2 4 8 16 32 64 128 256

Ti
m

e
(u

s)

Data size (KB)

MPI_Allreduce
MPI_Iallreduce

MPI_Allreduce w/ ULT

Fig. 5: Overhead of blocking, nonblocking, and ULT MPI collective communication on 1,024 cores.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

MPI-only

ULT=1
ULT=2

ULT=4
ULT=8

ULT=16

Ex
ec

ut
io

n
tim

e
br

ea
kd

ow
n

(%
)

Computation
RMA

Fig. 6: RMA time breakdown.

the outstanding MPI_Accumulate operation. target and
target_disp are changed every iteration in a round-robin
manner so that RMA operations access all processes and all
memory regions in all windows. For MPI+ULT, we create a
number of ULTs that cooperatively execute the for loop in
Listing 2. In order for each ULT to execute the code, it has
its own copy of buf. Consequently, MPI+ULT code spends
more memory for buf according to the number of ULTs used.

Fig. 6 illustrates performance results for MPI-only execu-
tion, denoted by MPI-only, and MPI+ULT executions with

various number of ULTs, denoted by ULT=X, where X is the
number of ULTs used. All execution times are normalized to
that of MPI-only. The figure shows the execution time break-
down, which consists of the computation time (Computation)
and communication time (RMA). For the experiments, 64
processes were used, and each process contributed 1 GB (64
GB in total) of memory for windows. The data size for each
RMA operation was 4 KB.

The execution times of ULT=X in Fig. 6 show that using
more than one ULT improves the performance by hiding the
communication time. ULT=2, ULT=4, ULT=8, and ULT=16
reduced 26%, 39%, 44%, and 45% of the entire execution
time, respectively. From this experiment, we note that using
more than eight ULTs does not significantly reduce the execu-
tion time. The results indicate that our ULT-aware MPI runtime
can efficiently switch ULTs even for one-sided communication
and can help reduce the execution time of applications using
this kind of communication/computation pattern. Note that
although RMA operations such as MPI_Get are nonblocking,
synchronization calls such as MPI_Win_flush are blocking.
Therefore, whenever a process has to wait on a synchroniza-
tion operation, the execution time of application is wasted in
waiting. Overcoming this limit of blocking synchronization is
not easy, however, because there are no nonblocking counter-
parts for RMA synchronization operations.

(i,j,k)

A x = y

Fig. 7: The 27-point operator in HPCG. The equation at point
(i, j, k) depends the value at its location and its 26 surrounding
neighbors. The resulting sparse linear system of equations,
Ax = y, has 27 nonzero entries per row for the interior and
8 to 18 nonzeros entries for boundary equations.

V. APPLICATION RESULTS

In this section, we describe how to overlap communication
with computation in applications. We look at HPCG, a high-
performance conjugate gradient benchmark that is designed to
correlate with a broad set of important scientific applications,
especially for those governed by partial differential equations.
Also, we use MPI+ULT to reduce the runtime overhead in
SWAP-Assembler, a genome assembly application that uses
MPI+Pthreads programming.

A. High Performance Conjugate Gradient

HPCG [10] is a recently announced benchmark intended to
complement the High Performance Linpack (HPL) benchmark
currently used to rank supercomputers in the TOP500 list.
HPCG is designed to exercise computational and data access
patterns that more closely match a broad set of important
applications and to give incentive to computer system de-
signers to invest in capabilities that will have impact on
the collective performance of these applications. The HPCG
benchmark generates a synthetic discretized three-dimensional
partial differential equation model problem and computes
preconditioned conjugate gradient (PCG) iterations for the
resulting sparse linear system.

HPCG has two key communication patterns. One is an
all-reduce collective operation, which is used to compute
the residual of each iteration. The other is a neighborhood
communication, which is used to exchange data between
neighbors. These two communication patterns represent essen-
tial performance bottlenecks for many real applications. They
are prevalent in a variety of methods for discretization and
numerical solution of partial differential equations.

Listing 3 shows the simplified main loop of HPCG. The
algorithm solves the equation Ax = b using iterative method,
where A is usually a large and sparse matrix, b is a known
vector, and x is the computed result. The algorithm computes
x by iteratively guessing to obtain a good approximation to the
solution x until the residual is small enough or the algorithm
has reached the maximum number of iterations. The function
MG denotes a multigrid method used as a preconditioner
in HPCG. It provides a powerful technique to accelerate
the convergence of iterative solvers for linear systems. The

1 for (int k = 1; k <= max_iter && normr >
tolerance; k++) {

2 MG(A, r, z);
3 if (k == 1) {
4 WAXPBY(1.0, z, 0.0, z, p);
5 DDOT(r, z, rtz);
6 } else {
7 DDOT(r, z, rtz);
8 WAXPBY(1.0, z, beta, p, p);
9 }

10 SpMV(A, p, Ap);
11 DDOT(p, Ap, pAp);
12 WAXPBY(1.0, x, alpha, p, x);
13 WAXPBY(1,0, r, -alpha, Ap, r);
14 DDOT(r, r, normr);
15 normr = sqrt(normr);
16 }

Listing 3: The simplified main loop of HPCG

function DDOT(x, y, r) computes the dot product of two
vectors r = x · y. WAXPBY(alpha, x, beta, y, w)
computes w = alpha∗x+beta∗y, where x and y are vectors
and alpha and beta are scalars. SpMV(A, x, y) computes
the product y of a matrix A and a vector x.

Hiding Global Collective Communication in an Iterative
Method: The first key communication pattern is global collec-
tive communication. In the original HPCG algorithm, DDOT
(Listing 3, line 14) is used to calculate the residual normr of
each iteration and then compare it with a static tolerance
value. The function DDOT first computes a dot product of
two vectors, and then uses MPI_Allreduce to compute the
sum of all local dot product results. This global collective
communication is expensive and scales badly as the process
number increases.

We would like to use ULT to overlap this communication
with computation. At first glance, DDOT(r, r, normr)
happens at the end of the iteration, and there are no other
computations to overlap with. To find a potential overlap, we
need to “think between iterations”. The end of an iteration i is
also the beginning of the next iteration i+1. We may be able
to find some potential computation to overlap with DDOT(r,
r, normr) at the beginning of the loop. However, the
output normr is used in the conditional expression of the
loop to determine whether the loop should continue. To do
communication hiding between iterations, therefore, we have
to delay the decision of this conditional expression. In other
words, we will do MG speculatively regardless of the value
of normr and decide whether to break out the loop after
MG. Listing 4 shows our HPCG algorithm using MPI+ULT.
In line 20, the original DDOT is wrapped as a ULT function
ult_fn_dotprod so it can be executed asynchronously in
a ULT named thread. The parameters of DDOT are passed to
ult_fn_dotprod in a user-defined param data structure.
The thread ULT is joined at line 4 in the next iteration to
determine whether the residual computed in the last loop has
already met the requirement. Then ult_join is put after
MG so ult_fn_dotprod can overlap with MG. The overlap
is possible because both MG and ult_fn_dotprod have

1 for (int k = 1; k <= max_iter; k++) {
2 MG(A, r, z);
3 if (k > 1) {
4 ult_join(thread);
5 normr = sqrt(param.result);
6 if (normr <= tolerance)
7 break;
8 }
9 if (k == 1) {

10 WAXPBY(1.0, z, 0.0, z, p);
11 DDOT(r, z, rtz);
12 } else {
13 DDOT(r, z, rtz);
14 WAXPBY(1.0, z, beta, p, p);
15 }
16 SpMV(A, p, Ap);
17 DDOT(p, Ap, pAp);
18 WAXPBY(1.0, x, alpha, p, x);
19 WAXPBY(1,0, r, -alpha, Ap, r);
20 ult_fork(ult_fn_dotprod, ¶m, &thread

);
21 ult_yield();
22 }

Listing 4: HPCG using MPI+ULT.

read-only access to r, and MG does not change the value of
normr. In our new algorithm, we see that one advantage
of MPI+ULT is that it can be easily applied to an existing
algorithm without making big changes to the original structure
of the code. Note that we can also achieve the overlap with
MPI nonblocking collective function MPI_Iallreduce, but
will need to modify the function DDOT to facilitate the change.

Fig. 8a shows the performance of HPCG using MPI-only,
MPI+ULT, and MPI+Pthreads. With a small number of cores,
we do not see any benefits of MPI+ULT compared with MPI-
only because MPI_Allreduce is fast at a small scale so
there is not much to overlap. For example, with 16 cores,
DDOT counts only 0.62% of the total execution time, whereas
with 2,048 cores, it counts 36.8% of the total time. We even see
a little performance loss with the MPI+ULT version compared
with the MPI-only version when the core number is smaller
than 128 because of the scheduling overhead introduced by
the ULT library. When the core number increases, however,
the benefit of communication hiding begins to appear. With
2,048 cores, HPCG using MPI+ULT shows a performance
improvement of 19.8% compared with the MPI-only version.
The performance is gained from reducing the overhead of
MPI_Allreduce with ULT. Fig. 8b shows the execution
time breakdown of HPCG using MPI-only and MPI+ULT.
On 2,048 cores, the DDOT time has been reduced 56.8%
from 65.9 seconds to 28.7 seconds (the first two DDOTs
remain unchanged). At the same time, the MG time has slightly
increased 8.7% from 91.4 seconds to 99.4 seconds. There are
three DDOT calls in HPCG main loop. The last DDOT overlaps
with MG, and its execution time is counted inside MG. The
increased MG time comes from two factors. First, the delayed
DDOT slows MG down a little as it competes with MG to use
MPI runtime for communication. But the overhead is moderate
because the cost of MPI_Allreduce using ULT is relatively

small (cf. Fig. 5). Second, because the decision of normr has
been delayed, one additional MG is called compared to the
original MPI-only implementation. As long as the number of
iterations is big, one additional MG is acceptable.

In the “MPI+Pthreads” version in Fig. 8a, ult_fork
and ult_join are replaced by pthread_create
and pthread_join, and ult_yield is removed.
Compared with MPI-only, the runtime overhead of
MPI+Pthreads is higher because it needs the thread level
MPI_THREAD_MULTIPLE, where MPI calls are protected
by locks. The lock used to protect MPI critical sections will
cause contention between different threads, thus leading to
performance loss. In Fig. 8a, we show the results of testing
two configurations of “MPI+Pthreads” HPCG, one with 8
processes per node (ppn=8), the other with 16 processes per
node (ppn=16). Since we created an additional thread T
for doing MPI_Allreduce, each process has two POSIX
threads. With ppn=8, we have 16 POSIX threads on a single
node, with one thread for each CPU core. With ppn=16,
we have 32 POSIX threads on a single node, and each CPU
core is oversubscribed with two POSIX threads. Neither of
these two configurations performs better than the MPI-only
HPCG. With ppn=8, because thread T is created only for
the MPI_Allreduce task. After it is finished, it will be
destroyed. Thus, when there is no MPI_Allreduce task,
only half of the CPU cores are utilized. With ppn=16, CPU
is oversubscribed; when thread T is created, it competes
with the main thread and causes lock contention. From the
comparison, we see that ULT is better suited than POSIX
threads for communication hiding. ULTs do not occupy
additional hardware resources because they share the same
kernel thread and get executed by context switching.

Hiding Neighborhood Communication: The second com-
munication pattern in HPCG is neighborhood communication,
which is used in the SpMV kernel. Modeled as a 3D 27-
stencil grid (Fig. 7), each process has to do halo exchange
with up to 26 neighbors before it computes its own submatrix.
After the halo exchange, the kernel will do sparse matrix-
vector multiplication on its submatrix. The halo exchange only
exchanges the edge data; thus, the submatrix can be divided to
two parts: internal and external. While the external part needs
communication before computation, the internal part can be
performed independently. In our MPI+ULT SpMV algorithm,
we create a ULT for each neighbor to do halo exchange and
the computation related to that neighbor. In order to partition
the matrix by neighbors, the external matrix part has to change
its format from compressed sparse row (CSR) to compressed
sparse column (CSC). Also, another ULT is assigned to do
internal computation only, with periodically yielding for MPI
progress. In this way, the halo exchange with neighbors can
be overlapped with the internal computation.

Fig. 9 shows the speedup of SpMV using MPI+ULT
compared with MPI-only SpMV. As the proportion of halo
exchange increases, the benefit of communication hiding be-
comes more obvious. On 4,096 cores, the performance of
MPI+ULT SpMV improves 14.8% compared with the MPI-

 0

 100

 200

 300

 400

 500

 600

16 32 64 128 256 512 1K 2K
 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

G
FL

O
P/

s

Sp
ee

du
p

#Cores

MPI only
MPI+ULT

MPI+Pthreads (ppn=16)
MPI+Pthreads (ppn=8)
MPI+ULT vs. MPI only

(a) Performance of HPCG using MPI-only, MPI+ULT and
MPI+Pthreads. Each MPI process uses a grid size of 1283.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

MPI Only MPI+ULT

Ti
m

e
(s

)

DDOT
WAXPBY

SpMV
MG

(b) HPCG time breakdown for 2,048 cores.

Fig. 8: HPCG performance.

 0

 20

 40

 60

 80

 100

64 256 1K 4K
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

%
 o

f t
ot

al

Sp
ee

du
p

#Cores

Halo Comp. speedup

Fig. 9: SpMV speedup (MPI+ULT vs. MPI-only). Each MPI
process has a grid size of 1283.

only SpMV.

B. SWAP Genome Assembler

SWAP-Assembler is a scalable and efficient genome as-
sembler designed for processing massive sequence data on
thousands of cores [16], [11]. It is one of the few parallel
genome assemblers that run on distributed memory systems.
The genome sequence data is distributed among different
processes. In order to access the data from other processes
and serve the requests from other processes, each process
spawns two threads, one as a client and the other as a server,
to communicate with each other. During the edge merge stage,
because multiple processes can request the same read at the
same time, SWAP uses a set of “Lock-Computing-Unlock”
steps to operate on a read. If two processes request the same
read at the same time, they will use a back-off algorithm
to avoid collision. The server thread and the client thread
can call MPI functions independently. However, because MPI

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

16 32 64 128 256 512 1024

Ti
m

e
(s

)

#Cores

MPI+Pthreads (ppn=8)
MPI+ULT (ppn=16)

Fig. 10: Performance of SWAP-Assembler.

functions are protected by a global lock1, only one thread can
enter the MPI function call at a time, which means the client
thread and the server thread may spend much of their time
competing the lock to enter the MPI function.

To reduce the thread overhead, we replace both server
thread and client thread with ULTs, so the server ULT and
client ULT can run on the same kernel thread. With this
simple change, the MPI+ULT SWAP-Assembler can double
the number of processes used on a node. Moreover, we can use
MPI_THREAD_ULT instead of MPI_THREAD_MULTIPLE
for this application, eliminating the use of locks for MPI
function calls. Fig. 10 shows the performance of SWAP-
Assembler with MPI+Pthreads and MPI+ULT. We performed
a strong-scaling experiment with a synthetic sequence of 5
million reads, where each read contains 36 nucleotides. The
result of MPI+Pthreads with ppn=16 (i.e., oversubscription)
is not shown in the figure, because its lock contention is
too heavy to allow the application to finish in a reasonable

1IBM MPI provides an option for better fine-grained lock support, but it is
only available for Blue Gene systems.

time. MPI+ULT is between 2.0 and 6.3 times faster than
MPI+Pthreads (ppn=8), depending on the number of cores
used. With a smaller number of cores, SWAP-Assembler
is more likely to encounter collision, so the overhead of
Pthreads library is higher. By replacing Pthreads with ULT, the
speedup of MPI+ULT over MPI+Pthreads is relatively higher
for smaller number of cores. With 16 cores, the overhead of
pthreads library is 25.4% of the total execution time while
with 1,024 cores the overhead is 9.9%. By replacing pthreads
with Qthreads, the overhead of the thread library is reduced
to 8.2% with 16 cores and 4.4% with 1,024 cores.

VI. RELATED WORK

Hybrid programming has long been a research topic with
the popularity of SMP clusters [17]. A decade ago, the total
number of CPU cores on a SMP node was still small, so
that two-level parallelism was not obvious. As computer ar-
chitectures moved toward many-core processors, however, the
trend for hybrid programming became more prominent [18],
[19], [20]. Thus it is considered as a promising programming
model for future exascale systems [1]. Considerable research
has been done in this direction. Most of the research focuses
on how applications can use “MPI+X” model to improve
the application performance [21]. Other research has focused
on runtime improvement of the hybrid model [8], [9], with
some investigations looking at better utilization of thread idle
time and other investigations exploring ways to minimize lock
contention. Our work focuses on using user-level threads to
overlap communication.

MPI provides nonblocking calls to overlap communica-
tion with computation. Nonblocking point-to-point MPI calls
have been added to the MPI standard since MPI-1.0. Recent
work [6], [22] adds nonblocking collectives to the MPI-3.0
standard [5], extending the use of MPI nonblocking operations
to collective communication patterns. However, some one-
sided synchronization operations such as MPI_Win_flush
still do not have a nonblocking equivalent to be used asyn-
chronously. With MPI+ULT, one-sided synchronization calls
can be easily overlapped by wrapping them in an ULT,
overlapping them with useful computation. The use of ULT
has been explored for task parallelism on shared-memory
machines [23], [24], [25]. In this paper, we focus on overlap-
ping communication and computation in distributed-memory
systems. To make computation/communication overlap easier,
Marjanović et al. proposed MPI/SMPSs [26], integrating MPI
with a task-based programming model called SPMSs [27].
MPI/SPMSs focused on improving the programming model
by extending C/Fortran programming languages with a set of
pragmas/directives to easily generate tasks for communication.
In our work, we focus on runtime improvement by effectively
integrating ULT with MPI.

A rich body of literature exists on the conjugate gradi-
ent (CG) algorithm because of the importance of the prob-
lem. In CG, there are two communication patterns: global
collective communication and neighborhood communication.
Demmel [28] proposed overlapping the global reduction with

computation algorithmically. With MPI+ULT, we can eas-
ily achieve this without big changes to the code structure
of HPCG. Ghysels and Vanroose [29] recently proposed a
pipelined CG that has only a single nonblocking reduction
per iteration, but the method requires extra floating-point
operations and significant change to the algorithm. Hoefler
et al. [7] optimized the neighborhood communication in CG
with libNBC [6] but did not optimize the global reduction.
In our work, we have optimized both the global collec-
tive communication and neighborhood communication and
successfully hidden them with MPI+ULT. Recent studies of
HPCG on Intel Phi [30] and Tianhe [31] focus mainly on
shared-memory optimizations. In our paper, on the other hand,
we focus on improving multinode scalability by hiding the
communication in HPCG. Also, one can optimize commu-
nication by offloading it to hardware. Kandalla et al. [32]
offloaded the MPI_Iallreduce operation on InfiniBand
clusters, successfully improving PCG performance 21%. With
MPI+ULT, we have been able to achieve comparable benefits
with runtime improvement.

VII. CONCLUSION AND FUTURE WORKS

In this paper we present MPI+ULT, a new approach to
support asynchronous MPI communication using ULT. Our
runtime not only supports hiding the communication of MPI
point-to-point and collective calls but also can be used for
overlapping MPI one-sided synchronization calls. Compared
with other runtime systems, MPI+ULT provides several advan-
tages. With ULT, overlap of communication and computation
can be achieved easily at a low cost. We have evaluated
our runtime with various microbenchmarks and applications.
Experiments show that MPI+ULT can help applications hide
different communication patterns such as global collective
communication and neighborhood communication and im-
proves the application performance up to 19.8% on 2,048
cores. Also, by replacing pthreads with ULT in a parallel
genome assembly application, we have improved its perfor-
mance by 2.0 to 6.3 times.

MPI+ULT can be further investigated in several directions.
First, we plan to integrate both ULT and kernel thread with
MPI in the future. Each kernel thread will fork multiple ULTs
to overlap computation and communication. Second, we will
further improve communication hiding by reducing the ULT
library overhead. Third, we have seen benefits from MPI one-
sided micro-benchmarks that ULT can be effectively used to
overlap MPI one-sided synchronization. This potential has not
been fully explored, and more MPI one-sided applications may
benefit from MPI+ULT. Finally, the conjugate gradient method
is a building block for Krylov subspace methods and many
partial differential equation applications. The improvement of
HPCG in this paper can be applied to more applications that
follow the same communication pattern.

ACKNOWLEDGMENTS

This material was based upon work supported by the
U.S. Department of Energy, Office of Science, Office of

Advanced Scientific Computing Research, under Contract DE-
AC02-06CH11357. We gratefully acknowledge the computing
resources provided on Blues, a high-performance computing
cluster operated by the Laboratory Computing Resource Cen-
ter at Argonne National Laboratory.

REFERENCES

[1] J. Dongarra et al., “The international exascale software project
roadmap,” Int. J. High Perform. Comput. Appl., vol. 25, no. 1, pp. 3–60,
feb 2011.

[2] T. Saif and M. Parashar, “Understanding the behavior and performance
of non-blocking communications in mpi,” in Euro-Par 2004 Parallel
Processing, ser. Lecture Notes in Computer Science, M. Danelutto,
M. Vanneschi, and D. Laforenza, Eds. Springer Berlin Heidelberg,
2004, vol. 3149, pp. 173–182.

[3] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, “Optimizing band-
width limited problems using one-sided communication and overlap,”
in Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.
20th International, April 2006.

[4] T. S. Abdelrahman and G. Liu, “Cluster computing,” R. Buyya and
C. Szyperski, Eds. Commack, NY, USA: Nova Science Publishers,
Inc., 2001, ch. Overlap of Computation and Communication on Shared-
memory Networks-of-workstations, pp. 35–45.

[5] M. P. I. Forum, MPI: A Message-Passing Interface Standard
(Version 3.0), MPI Forum Std., Spetember 2012. [Online]. Available:
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

[6] T. Hoefler, A. Lumsdaine, and W. Rehm, “Implementation and per-
formance analysis of non-blocking collective operations for MPI,” in
Proceedings of the 2007 ACM/IEEE conference on Supercomputing, ser.
SC ’07. New York, NY, USA: ACM, 2007, pp. 52:1–52:10.

[7] T. Hoefler, P. Gottschling, A. Lumsdaine, and W. Rehm, “Optimizing a
Conjugate Gradient Solver with Non-Blocking Collective Operations,”
Elsevier Journal of Parallel Computing (PARCO), vol. 33, no. 9, pp.
624–633, Sep. 2007.

[8] M. Si, A. J. Peña, P. Balaji, M. Takagi, and Y. Ishikawa, “MT-MPI:
multithreaded MPI for many-core environments,” in 2014 International
Conference on Supercomputing, ICS’14, Muenchen, Germany, June 10-
13, 2014, 2014, pp. 125–134.

[9] A. Amer, H. Lu, Y. Wei, P. Balaji, and S. Matsuoka, “MPI+threads:
Runtime contention and remedies,” in Proceedings of the 20th ACM
SIGPLAN symposium on Principles and practice of parallel program-
ming, ser. PPoPP ’15, 2015.

[10] “HPCG project homepage.” [Online]. Available: https://software.sandia.
gov/hpcg

[11] J. Meng, B. Wang, Y. Wei, S. Feng, and P. Balaji, “SWAP-assembler:
scalable and efficient genome assembly towards thousands of cores,”
BMC Bioinformatics, vol. 15, no. Suppl 9, pp. –2, 2014.

[12] D. E. Knuth, The Art of Computer Programming. Addison-Wesley,
1997, vol. 1.

[13] “The Go programming language.” [Online]. Available: http://golang.org/
[14] K. Wheeler, R. Murphy, and D. Thain, “Qthreads: An api for program-

ming with millions of lightweight threads,” in Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Symposium on,
2008, pp. 1–8.

[15] P. Balaji, D. Buntinas, D. Goodell, W. D. Gropp, and R. Thakur, “Fine-
grained multithreading support for hybrid threaded mpi programming,”
Int. J. High Perform. Comput.Appl., vol. 24, pp. 49–57, Feb 2010.

[16] J. Meng, J. Yuan, J. Cheng, Y. Wei, and S. Feng, “Small world
asynchronous parallel model for genome assembly,” in Network and
Parallel Computing, J. Park, A. Zomaya, S.-S. Yeo, and S. Sahni,
Eds. Springer Berlin Heidelberg, 2012, vol. 7513, ch. Lecture Notes
in Computer Science, pp. 145–155.

[17] F. Cappello and D. Etiemble, “Mpi versus mpi+openmp on the ibm sp for
the nas benchmarks,” in Supercomputing, ACM/IEEE 2000 Conference,
Nov 2000, pp. 12–12.

[18] H. Gahvari, W. Gropp, K. Jordan, M. Schulz, and U. Yang, “Mod-
eling the performance of an algebraic multigrid cycle using hybrid
mpi/openmp,” in Parallel Processing (ICPP), 2012 41st International
Conference on, Sept 2012, pp. 128–137.

[19] P. D. Mininni, D. Rosenberg, R. Reddy, and A. Pouquet, “A hybrid
mpi–openmp scheme for scalable parallel pseudospectral computations
for fluid turbulence,” Parallel Computing, vol. 37, no. 6–7, pp. 316 –
326, 2011.

[20] R. Rabenseifner, G. Hager, and G. Jost, “Hybrid mpi/openmp parallel
programming on clusters of multi-core smp nodes,” in Parallel, Dis-
tributed and Network-based Processing, 2009 17th Euromicro Interna-
tional Conference on, Feb 2009, pp. 427–436.

[21] X. Wu and V. Taylor, “Performance characteristics of hybrid
mpi/openmp implementations of nas parallel benchmarks sp and bt
on large-scale multicore supercomputers,” SIGMETRICS Perform. Eval.
Rev., vol. 38, no. 4, pp. 56–62, Mar. 2011.

[22] T. Hoefler and A. Lumsdaine, “Overlapping communication and com-
putation with high level communication routines,” in Proceedings of the
2008 Eighth IEEE International Symposium on Cluster Computing and
the Grid, ser. CCGRID ’08. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 572–577.

[23] S. L. Olivier, A. K. Porterfield, K. B. Wheeler, and J. F. Prins, “Schedul-
ing task parallelism on multi-socket multicore systems,” in Proceedings
of the 1st International Workshop on Runtime and Operating Systems
for Supercomputers, ser. ROSS ’11. New York, NY, USA: ACM, 2011,
pp. 49–56.

[24] J. Nakashima and K. Taura, “Massivethreads: A thread library for
high productivity languages,” in Concurrent Objects and Beyond, ser.
Lecture Notes in Computer Science, G. Agha, A. Igarashi, N. Kobayashi,
H. Masuhara, S. Matsuoka, E. Shibayama, and K. Taura, Eds. Springer
Berlin Heidelberg, 2014, vol. 8665, pp. 222–238.

[25] B. Barrett, J. Berry, R. Murphy, and K. Wheeler, “Implementing a
portable multi-threaded graph library: The mtgl on qthreads,” in Parallel
Distributed Processing, 2009. IPDPS 2009. IEEE International Sympo-
sium on, May 2009, pp. 1–8.

[26] V. Marjanović, J. Labarta, E. Ayguadé, and M. Valero, “Overlapping
communication and computation by using a hybrid mpi/smpss ap-
proach,” in Proceedings of the 24th ACM International Conference on
Supercomputing, ser. ICS ’10. New York, NY, USA: ACM, 2010, pp.
5–16.

[27] J. Perez, R. Badia, and J. Labarta, “A dependency-aware task-based
programming environment for multi-core architectures,” in Cluster Com-
puting, 2008 IEEE International Conference on, Sept 2008, pp. 142–151.

[28] J. W. Demmel, M. T. Heath, and H. A. van der Vorst, “Parallel numerical
linear algebra,” Acta Numerica, vol. 2, pp. 111–197, 1 1993.

[29] P. Ghysels and W. Vanroose, “Hiding global synchronization latency in
the preconditioned conjugate gradient algorithm,” Parallel Computing,
vol. 40, no. 7, pp. 224 – 238, 2014, 7th Workshop on Parallel Matrix
Algorithms and Applications.

[30] J. Park et al., “Efficient shared-memory implementation of high-
performance conjugate gradient benchmark and its application to
unstructured matrices,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’14, 2014. [Online]. Available: http://dx.doi.org/10.1109/SC.
2014.82

[31] X. Zhang, C. Yang, F. Liu, Y. Liu, and Y. Lu, “Optimizing and scaling
hpcg on tianhe-2: Early experience,” in Algorithms and Architectures
for Parallel Processing, ser. Lecture Notes in Computer Science, 2014,
vol. 8630, pp. 28–41.

[32] K. Kandalla et al., “Designing non-blocking allreduce with collective
offload on infiniband clusters: A case study with conjugate gradient
solvers,” in Parallel Distributed Processing Symposium (IPDPS), 2012
IEEE 26th International, May 2012, pp. 1156–1167.

